当前位置:首页 > 智能硬件 > 机器人
[导读] (文章来源:中国机器人网) 再现动物的多样化和敏捷性运动技能一直是机器人技术中的长期挑战。 在过去尽管手动设计的控制器已经能够模拟许多复杂的行为,但是构建这样的控制器涉及耗时且困

(文章来源:中国机器人网)

再现动物的多样化和敏捷性运动技能一直是机器人技术中的长期挑战。

在过去尽管手动设计的控制器已经能够模拟许多复杂的行为,但是构建这样的控制器涉及耗时且困难的开发过程,常常需要掌握每种技能的细微差别的大量专业知识。强化学习为自动化控制器开发中涉及的人工工作提供了一种颇具吸引力的选择,但是,设计能够从第三方行为中引发所需行为的学习目标,也可能需要大量专门技能。

但谷歌最近的一个视频中展现了一种新的可能。前段时间谷歌AI实验室的一组研究人员正在努力开发四足的像狗一样的机器人,该机器人的成果已经得到了证明,该机器人通过研究真正的狗如何运动来学习狗的行为。该团队已在Google AI博客上发布了他们正在做的工作的大纲。

谷歌AI博客本周发表的文章写道,其研究人员开发出一种人工智能系统,可以从动物的动作中学习,从而赋予机器人更大的灵活性。研究人员认为他们的方法可以促进机器人的发展,这些机器人可以完成现实世界中的任务,比如在多层仓库和配送中心之间运输物品。

通过模仿生物的动作来训练机器人来执行任务并不是什么新鲜事,例如,建造汽车的机器人手臂被教导如何模仿人类手臂的预期动作来点焊或拧紧螺栓。但是通过向机器人展示真实的狗的视频来教机器人绝对是全新的想法,而这就是Google前段时间所做的研究。

在这项工作中,他们提供了一个模仿学习系统,使有腿机器人可以通过模仿真实世界的动物来学习敏捷的运动技能。证明了通过利用参考运动数据,一种基于学习的方法能够自动综合控制器,以解决腿式机器人的各种指令库行为。通过将有效的领域自适应样本技术整合到训练过程中,谷歌的这套系统能够学习模拟中的自适应策略,然后可以快速将其用于实际部署。为了证明其系统的有效性,他们训练了一个18自由度的四足机器人来执行各种敏捷行为,包括从不同的运动步态到动态的跳跃和转弯。

在他们的研究放出的视频中,该机器人是一只名为Laikago的四足动物,名字来源是紧随Laika之后的(它是太空中的第一只狗),谷歌的研究人员通过向机器人展示真实狗的运动捕捉画面,训练它像真正的狗一样走路,奔跑,行动、甚至是像真的狗一样追逐它自己的尾巴。该团队的框架采用动物(本案例中是一条狗)的动作捕捉片段,并使用强化学习(reinforcement learning)来训练控制策略。为系统提供不同的参考动作,使得研究人员能够“教”一个四足的Unitree Laikago机器人完成一系列动作,比如从快走(以每小时2.6英里的速度)到跳跃或转弯。

为了验证他们的方法,研究人员首先收集了一组真实狗狗的各种技能数据。(训练主要是在物理模拟中进行的,因此可以密切跟踪参考运动的姿态)。然后,通过在奖励函数中使用不同的动作(该函数描述了行为者应该如何表现),研究人员使用了大约2亿个样本来训练一个模拟机器人模仿动作技能。

但是模拟器通常只能提供对真实世界的粗略近似。为了解决这个问题,研究人员采用了一种适应性技术,通过改变机器人的质量和摩擦等物理量来随机化模拟中的动力学。这些值是用编码器映射到一个数字表示(即编码)作为输入传递给机器人控制策略。当将该策略部署到一个真实的机器人上时,研究人员删除了编码器,并搜索出一组允许机器人成功执行技能的变量。

但视频实际上首先是由AI系统进行处理的,该系统会将视频中的动作转换为Laikago的动画版本。为了找出可能的解释错误,该团队向AI系统显示了一只真实狗在行动的多个定格视频(因为数字狗是由金属,电线马达而不是骨头,肌肉和肌腱制成的)。AI系统根据现实世界中可能遇到的场景,建立可能动作的工具集。一旦模拟建立了知识库,就将其“大脑”上载到Laikago,然后Laikago将模拟中学到的知识作为自己行为的起点。

行动中的Laikago视频显示,该技术确实行之有效。但该团队表示,他们能够在大约50次试验中,利用不到8分钟的真实数据,使一项策略适应现实世界。此外,他们还演示了现实世界中的机器人学会了模仿狗的各种动作,包括踱步和小跑,以及动画中的关键帧动作,如动态跳跃转弯。

论文作者写道:“我们证明,通过利用参考运动数据,一种单一的基于学习的方法能够为腿式机器人的各种行为自动合成控制器。”“通过将高效样本的领域适应技术整合到训练过程中,我们的系统能够在模拟中学习适应策略,然后能够快速适应现实世界的部署。”

机器狗能够像真正的狗一样走路和行走,甚至模拟了追逐它的尾巴,但是,与其他先进的机器人动物(例如,来自Boston Dynamics的那些动物)相比,它也有一些不足之处,因为这些动物只是通过随机编程来获得技能,灵活性远远不够,控制策略也并不完美——由于算法和硬件的限制,它不能学习高度动态的行为,如大的跳跃和行为,也不像最好的手动设计的控制器那样稳定。例如,机器狗跌跌撞撞或绊倒后重新站起来仍然很麻烦。

但是Google的研究人员并不畏惧,他们相信更多的研究将使他们的机器人带来越来越逼真的行为。研究人员将继续改进控制器的鲁棒性,并开发能够从其他运动数据来源(如视频剪辑)学习的框架。.
     

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭