当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 人工智能(AI)和机器学习(ML)的兴起将带来一个新的数字化时代。但是,人们担心AI技术会取代现有的人工,这部分是正确的。正如研究预测的那样,人工智能替代工作的速度必将飞速上升,从而影响到工厂工

人工智能(AI)和机器学习(ML)的兴起将带来一个新的数字化时代。但是,人们担心AI技术会取代现有的人工,这部分是正确的。正如研究预测的那样,人工智能替代工作的速度必将飞速上升,从而影响到工厂工人,会计师,放射科医生,律师助理和司机等工作。

因为AI技术的快速普及和应用落地,企业劳动力正慢慢发生转变。但是,距离完全替代人工,还有很远的距离。

重塑你的职业规划

AI替代人工引发人们的担忧,也许人工智能和自动化取代数百万技术专业人员的工作只是时间问题。一份来自2018年由“世界经济论坛”的报告显示,大约75万个就业机会将于未来五年内转移到自动化和人工智能。但报告也指出,尽管将替换许多工作,但同时还将为AI工程师和AI专家创造1.33亿个新的职位。

简而言之,在未来五年内,人工智能领域将新增约5800万个职位。所以,你不必担心AI和自动化会抢走工作,而应考虑如何重塑自己的职业生涯。

面对AI和ML,如何为这种影响做好准备呢?人工智能和机器学习项目正在引领每个行业进入崭新的时代。问题是,你将这些体验变为现实的最佳方法是什么?可以用于机器学习和AI的编程语言是什么呢?提前做准备,可以首先考虑将Python用于机器学习和AI。

为什么要使用Python?

Python是AI的基础语言。但是,它确实不同于传统的软件项目,因此有必要更深入地研究。建立AI职业生涯的关键在于学习Python,它是一种既稳定又灵活的语言,很多开发者都喜欢它。现在,它已广泛用于机器学习应用,并已成为整个行业的最佳选择之一。

Python有大量的库/框架

在运行ML或AI算法时选择最适合的,通常是一项棘手的任务。而拥有正确的库集,为开发人员提供了最佳解决方案的框架,以及良好的环境至关重要。

为了减轻开发时间,大多数开发人员都依赖Python的库和框架。在软件库中,开发人员已经查找了预编写的代码来解决编程难题。在此,Python预先存在的大量库和框架供你选择,比如下面的这些:

SciPy,高级计算

Keras,机器学习和深度学习模型

Scikit-learn,数据建模

NumPy,数据清理和数据处理

Seaborn,数据可视化

Caffe,图像处理

Pandas,数据分析的一般用法

PyTorch,训练深度学习模型

OpenCV,图像处理

使用这些解决方案,开发人员可以更轻松地,更快地开发产品。即使这样,开发团队也需要时间来寻找最适合其项目的库。

Python拥有强大的社区和广泛的知名度

根据开发社区Stack Overflow(2018)的调查,Python被视为开发人员中最受欢迎的编程语言之一。这仅意味着,对于你在就业市场中寻求的每项工作,人工智能将永远是他们寻求雇用的技能之一。

还可以看到,有将近14万个具有定制Python软件包的在线存储库。例如,SciPy,NumPy和Matplotlib之类的Python库可以很容易地安装在运行于Python上的程序中。

调查显示,Python相比于2019年中8个发展最快的编程语言,有151%的同比增长率。

现在,这些用于机器学习的软件包可帮助AI工程师从大型数据集中检测模式。Python的普及也得到互联网巨头的青睐,比如Google使用它来抓取网页;皮克斯动画工作室使用它制作电影;Spotify也使用Python来推荐歌曲。

在过去的几年中,Python已不断在全球范围内扩展其社区。你可以找到共享机器学习解决方案的多个平台和论坛。对于每个问题,你都能找到已经有人遇到了相同的问题。因此,通过社区很容易找到解决方案和指导。

平台无关

编程语言或框架允许开发人员在单个机器学习上实现,并且可以在另一机器学习上使用它们而无需进一步更改。关于Python的最好因素是,它是一种与平台无关的语言,并且受到Windows,macOS和Linux等其他几种平台的支持。

Python代码本身可以创建一个独立的程序,该程序可以在大多数操作系统中执行,甚至不需要Python编译器。

Python是简单的编程语言

Python是提供可读代码的最简单,最一致的编程语言。尽管机器学习伴随着复杂的算法,但Python的简洁和易读性使AI专业人员可以编写可靠的简单系统。这使开发人员可以解决复杂的机器学习问题,而不用处理语言的技术问题。

到目前为止,Python被认为是开发人员易于学习的唯一语言。与其他编程语言相比,Python是最直观的。尽管有人认为,这是由于Python提供的库数量众多,使得它适合所有开发人员使用。

结论

Python的强大功能和易用性使其迅速成为提供机器学习解决方案的核心语言之一。此外,自微芯片问世以来,人工智能和机器学习已成为迄今为止最大的创新领域,在这一领域发展,可为你的职业发展铺平道路。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭