当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 背景 各种新类型设备将会导致数据量的爆发,其中大部分新设备目前还不存在。数据是有价值的,因为人工智能(AI)可以将数据中挖掘出商业价值。为了实现人工智能,我们将不得不启用新的计算模型。

背景

各种新类型设备将会导致数据量的爆发,其中大部分新设备目前还不存在。数据是有价值的,因为人工智能(AI)可以将数据中挖掘出商业价值。为了实现人工智能,我们将不得不启用新的计算模型。

关键信息

一共有两条关键信息。首先,人工智能工作负载(即机器学习深度学习)需要一种处理数据的新方法——我们称之为新的计算架构(即计算模型)。后面将阐述“计算架构”的含义,以及AI工作负载需要哪些类型的更改。其次,人工智能计算架构需要材料工程的突破。我将讨论一些我们遇到的突破类型的例子。在应用材料领域,我们很兴奋地预见到人工智能将为材料工程带来巨大的增长机遇。

在这篇文章中,我的目标是总结AI工作负载的计算架构需求是如何不同于业界已经熟悉了几十年的传统计算架构(如x86或ARM)。我们将讨论为什么传统的冯•诺依曼计算架构对人工智能来说是不够的。并从一个我们做过的实证分析来说明,如果我们不启用新的计算架构,人工智能将无法实现。

人工智能的工作量有什么独特之处?

有三大不同之处,而且它们是相互关联的。

首先,人工智能需要大量内存,因为最流行的AI工作负载操作大量数据,但是内存也需要不同的组织方式。在流行的CPU中使用的传统多层缓存架构对AI来说是不必要的,AI需要更直接、更快速的内存访问。对于通过将数据存储在缓存中来重用数据,则没有那么多的关注。

在人工智能系统中输入大量的数据是非常重要的。以谷歌Translate™翻译服务为例:在2010年时,谷歌聘请了语言学家和算法专家来实现从英语到汉语的翻译,最后,他们的翻译准确率达到了70%。这很好,但不是很好。最近,谷歌采取了一种不同的方法:他们雇佣了很多数据科学家,数据科学家们将每个可用的英文网页及其中文译文输入到一个相对简单的深度学习算法中。这给了他们更好的结果,准确率高达98%!正如您所看到的,这里的重点是使用更简单的算法来使用更多的数据,这是支持用大量数据驱动AI的论点。

其次,人工智能涉及大量的并行计算。并行计算意味着您可以并行地处理工作负载的不同部分,而不必担心相互依赖。以图像处理为例,可以并行处理图像的不同部分,最后把图像拼凑在一起。因此,所有传统CPU中提供的复杂流水线对AI来说都是不必要的。

第三,人工智能需要大量的低精度计算,无论是浮点运算还是整数运算。这就是神经网络的力量,它是机器学习或深度学习的核心。传统的CPU有64位精度,在某些情况下可以达到512位。在很大程度上,AI并不需要这些。

因此,我们在这里有三个基本的和重要的计算架构变化,这是人工智能工作负载所需要的。这将我们带到了同构与异构计算体系结构的主题。

同构计算与异构计算

在PC和移动时代,大多数应用程序(或工作负载)在处理需求(即计算架构)方面看起来很相似。最初,所有的工作负载都是由CPU处理的,当我们开始使用更多的图片、视频和游戏时,我们开始使用GPU

将来,我们的工作负载看起来会越来越不同,每个工作负载都有自己的计算需求。我们需要的是各种不同的体系结构,每种结构都针对特定类型的工作负载进行了优化。这就是我们所说的“硬件复兴”,因为它推动了针对各种新工作负载的体系结构创新。

还有一个原因可以解释为什么这个行业正在从同构计算转向异构计算。这与功耗密度有关,功耗密度限制了传统CPU的性能。我们正处在一个用现代多核CPU架构来提高性能的困难时期。人工智能工作负载最基本的需求是更高的功耗效率(即每个操作对应的功耗)。随着登纳德定律(Dennard Scaling)的结束,实现这一点的惟一方法是构建特定于域(domain-specific)或特定于工作负载的体系结构,从而从根本上提高计算效率。

实证分析:DRAM和NAND出货量与数据生成相关

为了理解数据生成和计算需求之间的关系,我们将年度DRAM和NAND出货量与年度数据生成进行了比较。经验关系表明,DRAM和NAND出货量的增长速度都要高于数据生成的增长速度。在我们的分析中引入的数学关系是底层计算体系结构的代表。

我们利用所发现的经验关系做了一个思维实验,考虑在1%的智能汽车使用率下增加数据生成造成的影响。假设每辆智能汽车每天产生大约4TB的数据,我们发现,到2020年与前智能汽车水平相比,智能汽车产生的数据总量增加了5倍。

根据这一分析,使用传统的计算模型,我们将需要8倍的DRAM装机容量和25倍的NAND装机容量(2020年)来处理1%的智能汽车使用。在应用材料行业,我们绝对希望这种情况发生,但我们不认为会发生。相反,该行业将需要采用基于新材料和3D设计技术的新型存储器,以及新的计算架构。

综上,传统的冯•诺依曼计算架构在处理人工智能所需的海量数据时是不经济的,甚至是不可行的。我们需要新的计算架构。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭