当前位置:首页 > 消费电子 > 触控感测
[导读] 以苹果为代表的部分厂商选择了3D识别技术,通过结构光构建人脸模型进行识别。但此类技术不可避免涉及到刘海屏问题。以vivo等为代表的厂商选择了另一条路线,即屏下指纹解决方案。其优点在于能够“隐藏”

以苹果为代表的部分厂商选择了3D识别技术,通过结构光构建人脸模型进行识别。但此类技术不可避免涉及到刘海屏问题。以vivo等为代表的厂商选择了另一条路线,即屏下指纹解决方案。其优点在于能够“隐藏”,避免刘海屏的出现。

然而,即使都叫做屏下指纹识别,但按照技术原理与实现方法又可以细分为三种,光学式、超声波式、电容式。三种屏下指纹识别各有不同,现阶段发展状况也各有差异。

光学式指纹识别在生活中很常见,比如日常上班中的打卡机利用的就是光学指纹识别技术,主要是依靠光线反射来探测指纹回路。智能机中的光学式屏下指纹受限于智能机的体积,只能抛弃原有的光学系统而借助手机屏幕的光作为光源。同时由于LCD屏幕无法自发光,因此目前支持光学屏下指纹识别的产品都采用的是OLED屏幕。

其技术原理为,由于OLED屏幕像素间天生具有一定的间隔,能够保证光线透过。当用户手指按压屏幕时,OLED屏幕发出光线将手指区域照亮,照亮指纹的反射光线透过屏幕像素的间隙返回到紧贴于屏下的传感器上。最终形成的图像通过与数据库中已存的图像进行对比分析,进行识别判断。

光学式屏下指纹传感器的优势在于可以最大程度上避免环境光的干扰,在极端环境下的稳定性更好。但其同样面临干手指识别率的问题。此外,由于是点亮屏幕特定区域,不可避免面会出现屏幕易老化的问题(比如烧屏)。而且,光学式屏下指纹的功耗相对传统光学式指纹要高很多,这些都是有待解决的问题。

但是,超声波式屏下指纹识别同样有诸多急需解决的难题。比如成像质量低、技术不够成熟、产量较低等。目前,超声波式屏下指纹识别没能得到大范围推广商用,便是由于上述原因。电容式指纹识别技术想必我们都不陌生,目前几乎所用商用的指纹识别技术(除去屏下指纹)都是利用电容式指纹识别技术。其相对而言更加成熟,但想要将电容式指纹识别转移到屏下却有着不小的困难,其较弱的穿透能力正限制着其发展。

目前一种解决方案是,通过将传统的硅基指纹识别传感器换为透明的玻璃基传感器,并将其直接嵌入到LCD面板中,以此减少需要穿透的面板厚度,避开其穿透能力差的难题。当手指接触到屏幕时,指纹识别传感器便能感知到这一信号,从而完成识别。

相对来说,由于电容式屏下指纹识别在识别过程中不需要屏幕发光,因此其支持LCD屏幕,相对而言成本更低。但由于智能机显示屏上都有一层用于识别、触控的触摸层,由此可能会产生触控信号和指纹识别信号相互干扰的情况,这一问题有待解决。

目前来看,光学式屏下指纹识别技术更加成熟,产业链内拥有众多供应商,包括汇顶、Synaptics等都已经实现了光学屏下指纹传感器的量产。现阶段几乎全部搭载屏下指纹识别技术的产品,包括vivo NEX、华为Mate RS保时捷设计均采用的是光学式屏下指纹识别技术。以此可以推测,未来很长一段时间内,光学式屏下指纹识别都会是市场中绝对的主流。

超声波式屏下指纹识别方案目前尚未量产,主要由高通推动。早在2015年时,高通就已经推出了名为Sense ID的3D超声波指纹识别方案。到了2017年,高通发布新一代超声波指纹识别方案。据悉可以穿透1200μm的OLED屏幕或800μm的玻璃和650μm的铝合金来实现指纹识别。

除高通外,来自瑞典的FPC(Finge rprint Cards)也拥有自己的超声波屏下指纹识别技术,并且支持在显示屏任意位置捕捉与识别使用者的指纹,从而能够消除终端厂商在设计上的物理空间的限制。最重要的是,其还支持OLED屏幕与LCD屏幕。

但是,无论是哪一种超声波指纹识别技术,都面临着量产商用的难题。而且在当下的光学式屏下指纹识别占据绝对市场优势的当下,即使最终其克服困难实现量产,智能机厂商是否会舍弃已经成熟的光学式屏下指纹识别而转向超声波式屏下指纹识别,着实难以判断。因此,对于超声波式屏下指纹识别技术的未来,着实难以乐观。

相较而言,电容式屏下指纹识别方案目前只有JDI一家推出了相关产品。通过名为Pixel eyes的技术,JDI可以将电容式指纹识别传感器与TFT显示器的玻璃基板整合在了一起。玻璃基板通过检测电容变化来识别手指触控区域,而不必额外添加指纹识别模块。电容式屏下指纹识别技术的优势在于其可以支持LCD屏幕,进而能大大降低整机成本,有利于屏下指纹识别技术的推广。但就目前的现状来看,JDI距量产该技术尚有很长的路要走。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭