当前位置:首页 > > 充电吧
[导读]2010 年 1 月 26 日,NASA 宣布放弃解救「勇气号」。 由于车轮陷进软土,在火星服役了六年的「勇气号」转为静止观测平台。 尽管最初设计的工作寿命仅有 3 个月,但凭借自带的除尘功能和太阳能

2010 年 1 月 26 日,NASA 宣布放弃解救「勇气号」。

由于车轮陷进软土,在火星服役了六年的「勇气号」转为静止观测平台。

尽管最初设计的工作寿命仅有 3 个月,但凭借自带的除尘功能和太阳能帆板,「勇气号」将自身服役时间延长了几十倍。

但万万没想到,逃过了电力不足,「勇气号」却抵不过火星软土。

秉承着“在哪里跌倒,就要在哪里躺下。(站起来!)”的优良品质,NASA 科学家为火星车新增一项设计,能够让它在陷入软土时进行自我解救,避免下陷。

该项研究现发表于《Science Robotics》。

在了解研究新设计之前,先了解一下是什么样的地形让「勇气号」“无法自拔”。

据目前已勘测到的信息,火星是一个直径为 6787 千米的寒冷荒芜的星球。与地球一样,火星也拥有多样的地形,有高山、平原和峡谷,只不过,火星基本上是沙漠行星,沙丘、砾石遍布。

从气象条件来看,火星上尘暴多发,容易有沙石堆积成沙丘。2015 年 12 月17日,「勇气号」的同门「好奇号」就曾拍摄了一个高约 4 米的沙丘—;—;“纳米布沙丘”,风吹动沙粒到达沙丘迎风面,部分沙粒会从顶端滑落到背面,如此往复,形成了巨型沙丘。

看起来,火星如同荒漠一般,而包括「勇气号」、「好奇号」在内的勘测器,就是在这样的环境下开展工作。

也难怪「勇气号」会深陷于软土之中。

为了不重蹈「勇气号」覆辙,NASA 科学家对载有探测器的火星车进行了改造,新增了一项能够行走于沙土之上的设计,将机械腿和车轮进行结合。

由此,工作状态变成了这样。

不止为何,这项设计有点像.......“狗刨式”。

不信你看。

NASA 实验室中的这一小模型的原型为“资源勘探者 15”(Resource Prospector 15,RP15),为了能够适应火星和月球上遍布的松软土壤,NASA 研究人员在 2015 年建造了这一陆上机械车重达 300 千克。

据介绍,新设计的机械车将常规的旋转轮自旋运动与四个附件的抬升和横扫运动相结合,具有轮式,腿式和爬行行为,能够自如行走于松软的沙石之中。

为了检验该设备在不同地形下的表现,佐治亚理工学院和 NASA JSC 达成合作,按比例缩小了 RP15(实验替代品名为“Mini Rover”),并在干、湿两种状态下的地面进行试验。

Mini Rover 表现如何?

研究指出,研究人员在机械车的旋转动作中增加了腿式步态,即 RS(四足旋转序列)步态,机器人的动力从轮式车辆改变为通过摩擦流体进行划桨的运动。

这种步态能够让机械车搅拌沙石,周期性地将轮子陷进去的沙粒回流,从而达到松动效果,使其从陷入的沙坑中脱离。

在平地实验中,研究人员将 Mini Rover 放置于布满颗粒物的试验台中,让其车轮旋转 30s,然后再执行 RS 步态 60s,以此来进行测试。

结果显示,Mini Rover 一开始便深陷于颗粒物之中,难以借轮子之力进行牵引。不过,在启动 RS 步态之时,Mini Rover 将重新启动其速度,并通过扫掠产生升力,将自身从深陷的颗粒物中推出。

在斜坡实验中(坡度为 15),研究人员测试了 RS 步态中的三个子系统—;—;旋转,提升和清扫。结果显示,禁用这三个子系统中的任何一个都会降低斜坡的平均速度。

其中,禁用提升这一子系统对速度影响最大,车轮无法脱离于颗粒物将机械车抬起,降低了平均速度。另外,禁用车轮旋转子系统会导致速度降低 20% 左右。

在潮湿地面的实验中,研究人员将 50 公斤沙子和 0.9 升水混合,通过 RS步态对 Mini Rover 进行了拉杆试验。

另外,为了验证 Mini Rover 的实验测试,研究人员还在 RP15 进行了湿地实验。值得说明的是,由于技术问题,研究人员仅使用了三个可操作扫腿执行器进行了 RP15 测试。

不仅如此,为了与 RP15 进行对比,在 Mini Rover 实验中,研究人员禁用了 Mini Rover 的清扫子系统,一次,同时也作为检验提升和车轮旋转动作是否仍然有效。

实验结果显示,在这种不同的流变性中,RS 步态仍然增加了 Mini Rover 的牵引杆拉力。同时,对于不同地形的变化甚至组件故障都具有较强的鲁棒性。

至于 RP15,其爬行步态比传统的轮式机车创造了更明显的拉杆优势。也就是说,即使是在潮湿地面上,RP15 也能够行走自如。

实验 pass,可以上天了?

不难得知,无论是 Mini Rover,还是 RP15,在车轮进行改造之后,通过步态的改变,增加了拉杆牵引力,使其能够在不同条件的地面中实现有效行动。

不过,尽管二者在实验室的静态条件下有着良好表现,但在行星环境中,可能存在粘性较高,土质较为松软的地面,这与实验室提供的干、湿地面环境存在区别。

另外,在实验环境中,重力能够帮助沙堆崩塌,在湿地环境还有利于沙土堆积,与完全无重力加持的行星环境不同,这也是需要作为考量的因素。

总体来看,新改进的 RP15 要想登上太空,仍有一些发展空间。

但从另一个角度看,RP15 离上天,又近了一步。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭