当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 在12月初举办的NeurIPS会议上,IBM展示了一款新型人工智能芯片。 IBM的研究人员声称,他们已开发出一个更加高效的模型用于处理神经网络,该模型只需使用8位浮点精度进行训练,推理(

在12月初举办的NeurIPS会议上,IBM展示了一款新型人工智能芯片。

IBM的研究人员声称,他们已开发出一个更加高效的模型用于处理神经网络,该模型只需使用8位浮点精度进行训练,推理(inferencing)时更是仅需4位浮点精度。该研究的成果已于2018年12月初在国际电子元件会议(International Electron Devices MeeTIng,IEDM)和神经信息处理系统大会(Conference on NeuralInformaTIon Processing Systems,NeurIPS)上发布。

简而言之,IBM展示了专用于减少精度处理单元的定制硬件,以及能够利用该硬件进行深度神经网络(DNN)训练和推理的新算法。其主要目标在于提高硬件的能效,使其可以应用于范围更广泛的人工智能解决方案。

下一代人工智能应用程序需要更快的响应时间、更大的人工智能工作负载以及来自众多数据流的多模式数据。为了释放人工智能的全部潜能,我们重新设计了将人工智能考虑在内的硬件:从加速器到用于人工智能工作负载的特定用途硬件(例如我们的新芯片),以及最终用于人工智能的量子计算技术。使用新的硬件解决方案扩展人工智能是IBM研究院(IBM Research)更广泛努力的一部分,以期从范围狭窄的人工智能(通常用于处理具体的、界限清楚的任务)转向范围广泛的人工智能(跨越各个学科,可帮助人类解决最迫切的问题)。

具体而言,IBM研究院提出了可提供8位浮点(FP8)精度用于训练神经网络的硬件。8位浮点精度是16位浮点精度(FP16)的一半,而16位浮点精度自2015年以来一直是深度神经网络工作的事实标准。(提议的硬件将依靠FP16来累积点积,而不是现在使用的FP32。)借助于稍后介绍的新算法技术,IBM的研究人员表示,他们可以跨各种深度学习模型保持精确度。事实上,他们记录在案了使用FP8精度基于图像、语音和文本数据集对深度神经网络所进行的训练,并实现了与基于FP32的训练相当的模型精确度。

降低精度的模型基于三项软件创新:一种新的FP8格式,让用于深度神经网络训练的矩阵乘法和卷积计算可在不损失精确度的情况下工作;一种“基于组块的计算”技术,使得只需使用FP8乘法和FP16加法即可处理神经网络成为现实;并且在加权更新过程中使用浮点随机舍入,允许以16位浮点精度(而不是32位浮点精度)计算这些更新。

IBM展示的硬件是一款基于“新式数据流核心”的14纳米处理器。该处理器由降低精度的数据流引擎、16位浮点精度组块加法引擎和核心上内存及内存访问引擎组成。研究人员声称,与现在的平台相比,这种设计有可能使训练速度提高2到4倍。其中部分改进是用于训练模型的位宽减少了2倍的结果,但其余改进则是因为用于利用降低的精度的软件技术。

也许更重要的是,IBM研究院表示,由于其FP8/FP16模型相较标准FP16/FP32模型而言所需的内存带宽和存储空间更少,并且因为其硬件是为处理这些神经网络而定制的,能效可提高2-4倍以上。研究人员表示,这将使深度神经网络模型能够在一些边缘设备上进行训练,而不仅仅是在数据中心服务器上进行训练。

研究人员还发表了一篇关于在多个深度学习应用程序中使用4位浮点精度推理,而同样不损失精确度的论文(目前,大部分推理基于使用8位浮点精度或更多位浮点精度的计算)。此处的意义在于,位宽的减小将再次提高吞吐量和能效。对降低精度的需求也使得基于在训练期间优化的位精度构建用于训练和推理的统一架构更加自然。根据研究人员的说法,由于减少了专用于计算的处理器面积并拥有在内存中保留模型和激活数据的能力,此类硬件可以带来推理性能的超线性提升。

相关研究领域需要与将这种降低精度的模型应用于模拟芯片相关,模拟芯片天生不如数字芯片精确,但能效却高得多。IBM的研究人员开发了一种使用相变存储器(PCM)的8位浮点精度模拟加速器,它可以充当用于处理神经网络的计算基板和存储介质。根据2018年早些时候发布的工作成果,IBM研究院已经实施了该技术的创新加成,称为预测PCM(Projected PCM,Proj-PCM),它可以减少PCM硬件的一些令人烦恼的不精确性。研究团队认为,该设计可为物联网(IoT)和边缘设备等功率受限环境中的人工智能训练和推理提供高性能水平。

尽管所有这些仍处于研究阶段,但IBM显然对构建自己的人工智能芯片和加速器并将其交付到客户手中感兴趣。他们计划如何将该技术商业化仍然有待观察。无论如何,如果降低精度的训练和推理流行起来,IBM将面临很多竞争。这些竞争不仅仅来自将相应调整自己的处理器平台的英特尔英伟达等行业巨头,它们还来自似乎每天都在涌现的人工智能芯片初创公司。在一个如此飞速变化的环境中,成功将青睐于最灵活变通的参与者。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭