当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 角度传感器在与FPGA 正确配合下能够帮助工程师打造出无与伦比的机械。 自从人类发明了转轮,我们就希望了解如何通过改变精度提高转轮转动效率。在过去几个世纪,科学家和工程师已经研发了许多方

角度传感器在与FPGA 正确配合下能够帮助工程师打造出无与伦比的机械。

自从人类发明了转轮,我们就希望了解如何通过改变精度提高转轮转动效率。在过去几个世纪,科学家和工程师已经研发了许多方法来实现此目标,期间轮- 轴系统的基本原理得到了广泛应用,从汽车、音量旋钮、各种机械形式的齿轮到简陋的手推车,几乎每种机械系统均采用了这一原理[1]。

经过多个时代的探索,人们发现让转轮高效运转的最重要因素并非转轮本身(为何不彻底改造它呢?),而是转轮的轴角。目前测量和优化轴角的最有效方法是采用角度传感器。现有许多种角度传感器都能够通过轮轴监控和改进促进轮周效率优化;但如果配合使用FPGA,您就能够取得非常显著的效果,同时能够提高众多应用中的轮轴/ 轮周效率。

在详细介绍工程师们如何最佳利用赛灵思FPGA 达到上述目的之前,先让我们简单回顾一下角度传感器的部分基本原理。目前得到广泛应用就是编码器和分解器这两类角度传感器。

编码器和分解器的类型

编码器分为增量和绝对两个基本类别。增量编码器可以监控轮轴上的两个位置,并且可以在轮轴每次经过这两个位置时产生A 或B 脉冲。独立的外部电动计数器然后从这些脉冲解读出转速和旋转方向。虽然适用于众多应用,但是增量式计数器确实存在某些不足。例如,在轮轴停转情况下,增量编码器在开始运行之前必须首先通过调回到某个指定校准点来实现自身校准。另外,增量式计数器易受到电气干扰的影响,导致发送到系统的脉冲不准确,进而造成旋转计数错误。不仅如此,许多增量编码器属于光电器件 – 如果对目标应用有影响,则无法用于辐射危险区域。

绝对编码器是监控轮轴旋转计数和方向的传感器系统。在基于绝对编码器的系统中,用户一般把转轮连接到具有电触头或光电基准的轮轴。在轮轴运行时,基于绝对编码器的系统会记录旋转和运行方向,同时产生易于转换成代码(最常见的是二进制码或格雷码)的并行数字输出。绝对编码器的优势在于只需要校准一次(一般是在工厂中校准),而无需每次使用前都校准。此外,绝对编码器一般比其它编码器更可靠。不过,绝对编码器一般很昂贵,而且它们不利于进行并行数据传输,尤其是在测量其读数的电子系统距离编码器较远情况下。

分解器就其本身而言是一种旋转变压器—— 一种输出电压与其所监控的输入轴角唯一关联的模拟器件。它是一款具有0o~360o 旋转角度的绝对位置传感器,其直接连接到轮轴并报告转速和位置。分解器与编码器相比有诸多优势。分解器非常稳健可靠,能够经受带有灰尘、油污、极端温度、振动和辐射的严酷环境。作为一种变压器,分解器可以提供信号隔离以及对电气干扰的自然共模抑制。除了这些特性之外,分解器只需要四根线就可进行角数据传输,这使其能够适用于从重工业、微型系统到航空航天工业等各种应用。

无刷分解器得到了进一步改进,其无需与转子的滑环连接。因此,这种分解器更可靠,而且使用寿命更长。

分解器采用两种方式获取与轴角相关的输出电压。在第一种方式中,如图1 所示的转子绕组由交变信号激励,而输出来自两个定子绕组。由于定子是以机械方式定位到正确角度,因此输出信号幅度是通过轴角的三角正弦和余弦关联。正弦与余弦信号均具有与原始激励信号相同的相位;仅其幅度随轮轴的旋转通过正弦与余弦进行调制。

图1 – 分解器转子激励

在第二种方式中,定子绕组由相位正交的交变信号激励。然后在转子绕组中感应电压。绕组的幅度和频率固定,但其相移随轴角变化。

分解器可以放置到需要测量角度的位置[2]。而电子装置一般指的是分解器数字转换器(RDC),可以放置到需要测量数字输出的位置。分解器的模拟输出(含有轮轴角位置信息)然后经RDC 转换成数字形式。

典型RDC 的功能

一般而言,分解器的两个输出会应用到RDC 的正弦与余弦乘法器[3]。这些乘法器结合正弦和余弦查找表以及函数构成乘法数模转换器。图2 显示了其功能。

图2 – 分解器数字转换器(RDC)方框图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭