当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 人们越来越看好人工智能的前景及其潜在的爆发力,而能否发展出具有超高运算能力且符合市场的芯片成为人工智能平台的关键一役。由此,2016年成为芯片企业和互联网巨头们在芯片领域全面展开部署的一年。而在

人们越来越看好人工智能的前景及其潜在的爆发力,而能否发展出具有超高运算能力且符合市场的芯片成为人工智能平台的关键一役。由此,2016年成为芯片企业和互联网巨头们在芯片领域全面展开部署的一年。而在这其中,英伟达保持着绝对的领先地位。但随着包括谷歌、脸书、微软、亚马逊以及百度在内的巨头相继加入决战,人工智能领域未来的格局如何,仍然待解。

在2016年,所有人都看到了人工智能的前景和其潜在的爆发力,但不管是AlphaGo还是自动驾驶汽车,要想使得任何精妙算法得以实现,其基础是硬件的运算能力:也就是说,能否发展出超高运算能力又符合市场需求的芯片成为了人工智能平台的关键一役。

因此,毫无疑问,2016年也成为了芯片企业和互联网巨头们在芯片领域全面展开部署的一年:先有CPU芯片巨头英特尔年内三次大手笔收购人工智能和GPU领域企业;后有谷歌宣布开发自己的处理系统,而苹果、微软、脸书和亚马逊也都纷纷加入。

而在这其中,领跑者英伟达(Nvidia)因其在人工智能领域的优势使其成为了资本市场的绝对宠儿:在过去的一年中,曾经以游戏芯片见长的Nvidia股价从十几年的稳居30美元迅速飙升至120美元。

就当资本市场都在犹豫是否人工智能风口使得英伟达股价虚高时,2月10日,英伟达发布2016年第四季度的财报显示,其营收同比增长55%,净利润达到了6.55亿美元,同比增长216%。

“正当Intel、微软等巨头投资人工智能为基础的芯片技术时,英伟达已经以Q4财报显示,这家已经在人工智能领域投资将近12年的芯片企业已经开始就此收获可观的盈利。”资深技术评论家Therese PoletTI在其财报发布后指出。

研究机构TracTIca LLC估计,由于深度学习项目产生的硬件花费将从2015年的4360万美元,上升到2024年的41亿美元,而企业的相关软件花费将同期从1.09亿美元上升到100亿美元。

正是这一庞大的市场吸引着谷歌、脸书、微软、亚马逊以及百度在内的巨头相继宣布企业向人工智能领域的技术转向。“在人工智能相关技术上,目前英伟达仍然保持着绝对的领先,但随着包括谷歌在内的TPU等技术不断推向市场,未来的AI硬件格局仍然待解。”一位不便具名的欧洲资深从业人员向21世纪经济报道表示。

英伟达在GPU领域显著领先

根据英伟达最新公布的年报,其最主要的业务领域均出现了两位数以上的增长。除了其一直占有领先优势的游戏业务增长之外,其更多的涨幅事实上来自于数据中心业务和自动驾驶两大全新业务板块。

年报数据显示,数据中心业务有138%的增长,而自动驾驶有52%的增长。

“事实上,这是整个英伟达财报里最具有说明力的内容,因为数据业务和自动驾驶的增长根本上是人工智能和深度学习的发展所激发的。”一位美国计算机硬件分析师向21世纪经济报道表示。

在目前的深度学习领域,把神经网络投入实际应用要经历两个阶段:首先是训练,其次是执行。从目前的环境来看,训练阶段非常需要处理大量数据的GPU(图形处理器,下同),也就是以游戏和高度图形化的应用做图像渲染起家的英伟达领先的领域;而在转型阶段则需要处理复杂程序的CPU,也就是微软十几年来领先的领域。

“英伟达目前的成功事实上代表了GPU的成功,它正是最早的GPU领先者之一。”上述行业分析师表示。

深度学习神经网络尤其是几百上千层的神经网络,对高性能计算需求非常高,而GPU对处理复杂运算拥有天然的优势:它有出色的并行矩阵计算能力,对于神经网络的训练和分类都可以提供显著的加速效果。

举个例子,研究员不用一开始就人工定义一个人脸,而是可以将几百万个人脸的图像展示出来,让计算机自己定义人脸应该是什么样子的。学习这样的例子时,GPU可以比传统处理器更加快速,大大加快了训练过程。

因此,搭载GPU的超级计算机已经成为训练各种深度神经网络的不二选择,比如Google大脑早期就是使用Nvidia的GPU做深度学习。“我们正在搭建一款带有跟踪功能的摄像装置,因此需要找到最适合的芯片,GPU是我们的首选。”欧盟AR初创企业Quine CEO Gunleik Groven在今年一月的CES(国际消费电子展)现场向本报记者表示。

目前,谷歌、Facebook、微软、Twitter和百度等互联网巨头,都在使用这种叫做GPU的芯片,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种各样的软件功能。一些汽车制造商也在利用这项技术,开发可以感知周围环境、避开危险区域的无人驾驶汽车。

除了在GPU和图形计算领域长期领先,英伟达也是最早一批在人工智能领域进行投资的科技公司。2008年,当时在斯坦福做研究的吴恩达发表了一篇用GPU上的CUDA进行神经网络训练的论文。2012年“深度学习三巨头”之一Geoff Hilton的学生Alex Krizhevsky用英伟达的GeForce显卡在ImageNet中将图像识别准确率大幅提升,这也是英伟达CEO黄仁勋时常提到的英伟达注重深度学习的开端。

有报告显示,世界上目前约有3000多家AI初创公司,大部分都采用了Nvidia提供的硬件平台。

“深度学习被证明是非常有效的。”黄仁勋在季报2月10日的发布会中表示。在列举目前GPU计算平台正在人工智能、云计算、游戏和自动驾驶领域快速展开应用的同时,黄仁勋表示,在未来数年间,深度学习将会成为计算机计算的一种基础性的核心工具。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭