当前位置:首页 > 智能硬件 > 机器视觉
[导读]   近些年来, Google、Microsoft和Facebook等几大玩家都创建了自己的AI研发团队,并取得了一些令人瞩目的成果。   2015年11月9日,谷歌宣布TensorFlo

  近些年来, Google、Microsoft和Facebook等几大玩家都创建了自己的AI研发团队,并取得了一些令人瞩目的成果。

  2015年11月9日,谷歌宣布TensorFlow开源,这是一个在GPU上进行快速梯度式机器学习的巨大数据库。一些文章推测TensorFlow会带来一场人工智能革命,称谷歌的这一举动很大胆,因为Torch(由Facebook人工智能实验室的Ronan Collobert维护)已经提供了相似的深度学习开放资源,同时Yoshua Bengio教授的实验室对Theano(深度学习领域的先驱,一个适合普通大众的革命性软件)已经进行了长期的维护开发。在Wired的一篇文章中,Cade Metz把TensorFlow描述成谷歌的”人工智能引擎“。

  这篇文章讲的是进行线性代数和求导计算的开源数据库,甚至标题也十分夸张。许多其他新闻报道中,却对谷歌把代码设为公开资源感到惊诧。从更加技术的一方来看,从夸张的赞扬到泼冷水,各种反响都有。Soumith Chintala发布了一套应对所有竞争软件包的标准,为人们提供了一种定量的评价,它显示TensorFlow的首个版本落后于Torch和Caffe,特别在卷积神经网络方面。

  神经网络使用硬件和软件搭建出了类似于人脑的神经元网络,这可以追溯到上世纪80年代,但直到2012年,Krizhevsky和Hinton才开始发明在图形处理器(GPU)上运行神经网络的技术。GPU原本是为游戏和其它高性能图像软件设计的专用处理芯片,但事实证明,它们也非常适合驱动神经网络。

  谷歌、Facebook、Twitter、微软和其它许多公司现在都使用GPU驱动的人工智能来处理图像识别等多种任务,包括互联网搜索和安全应用等。Krizhevsky和Hinton后来加入了谷歌。

  微软的一个研究团队设计了一个远比“典型设计”复杂的神经网络,该网络能够进行多达152层的复杂数学运算,而典型设计一般只有六到七层。这预示着未来几年,微软这样的公司将能使用GPU及其它专用芯片的庞大集群来极大提升包括图像识别在内的各种各样的人工智能服务,包括识别语音甚至理解人类自然表达的口语。但是建造这样的大型神经网络是极其困难的。

  为了确定每一层的工作模式以及与其它层的通信方式,需要将不同的特定算法部署到每一层上,但这却是一个极其艰难的任务。但微软在这里也有技巧。他们设计了一个能够帮助他们建造这些网络的计算系统。研究人员可以识别一些可能有用的大型神经网络部署方式,然后该计算系统可以在一系列的可能性上对此进行循环计算,直到确定出最佳选择。

  据深度学习创业公司Skymind的首席研究专家Adam Gibson介绍,类似的做法现在越来越普遍。这被称为“超参数优化”(hyper parameter opTImizaTIon)。

  他说:”人们可以让一群机器跑起来,一次运行10个模型,然后找出最好的那个使用就行了。他们可以输入一些基本参数(基于直觉确定),然后机器在此基础上确定什么才是最好的解决方案。“Gibson说,去年Twitter收购的一家公司Whetlab就提供了类似的”优化“神经网络的方法。

  预计2016年将会是机器情绪识别的分水岭,而且情绪会成为我们与机器交互的强有力的新通道,并且由于照相机技术和计算机视觉算法的发展,未来机器通过我们人类的面部表情、眼动方式、肢体语言、说话方式甚至抬头等理解我们的能力会大大提高。

  卡耐基梅隆大学机器人研究所的Fernando De la Torre发明了特别强大的面部识别软件,被称作 IntraFace。他的团队采用机器学习的方法来教IntraFace如何以一种适用于大多数面孔的方式来识别和追踪面部表情。然后他们创建了个性化算法能够让软件对个人进行情感表达分析。不仅准确,而且高效,该软件甚至能在手机上运行。

  未来机器能更加理解我们的情绪,我们与机器的交互也会变得更加丰富。卡耐基梅隆大学的JusTIne Cassell研究虚拟同伴在教育行业的应用,她发现当虚拟同伴能对学生们的情绪状态做出适当反应,甚至在某些场合嘲笑他们时,学生们会更积极地参与也会学得更好。不难想象商业领域会多么喜欢用这个功能,广告人、营销人以及电影制片人能得到客户群体更为具体的信息。

  在医疗与AI的结合方面,目前医生问诊的依据主要是病人当次检查留下的医学影像信息,而在确诊时几乎忽略了既往病史、家族病史和测试结果的影响。但试想一下,如果病人的各项身体数据都可以被实时地、连续地记录,并且有一个足够智能的医疗诊断系统可以将这些数据与全世界范围内有相似症状病人的数据进行比较,在此基础上加以当前临床医学的研究和指导,综合给出诊断建议的话,是不是会精确和科学许多?

  一家名为Sentrian的生物传感器研究公司已经研发出可以完成上述操作的医疗系统。该公司总部位于美国佛罗里达州,致力于机器学习的相关研究,目前该智能医疗系统已进入临床测试阶段。他们希望创建一个让医生实时关注病人身体数据,进而做出具有更好、更早、更加个性化诊断方案的医疗系统。

  现在利用无线生物传感器可以收集一些简单或者较为复杂的身体信息,例如体温,心率,血氧饱和度和血钾含量等等。通常,每名远程病人每次只佩戴一至两个传感器,他们的数据就可以被医生直接分析。如果病人持续佩戴多个传感器,产生的数据就会非常庞大。

  Sentrian公司的医疗系统收集完病人数据后利用机器学习算法进行分析。该系统内包含慢性疾病(包括心脏病,糖尿病,慢性阻塞性肺疾病等等)的身体数据变化信息,病人的信息将会与这些信息进行匹配比较,系统通过观察细微的关联进行早期确诊。心率、血压、血氧饱和度等信息也会被传至云端进行分析,在必要时通知医生。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭