当前位置:首页 > 半导体 > 亚德诺半导体
[导读]当然,只需使用集成精密反馈电阻的IC。

提供高精度输出的可调高压电源很难构建。时间、温度和生产过程中的差异等带来的漂移通常都会导致误差。传统上用于反馈的阻性网络是常见误差源。本文提出一种利用集成电路(IC)反馈路径的新颖设计。此电路用于传感器偏置应用,与利用电阻网络提供反馈的设计相比,精度更高,漂移更低,更加灵活,甚至还能节约成本。

图1显示了构建可调高压偏置电路的传统方法。DAC用于产生控制电压,运算放大器用于提供增益。图1中的电路提供~0 V至110 V的输出,控制电压范围为0 V至5 V。

由于高压传感器常常具有相当高的容性,因此一般使用电阻(R2)来将运算放大器输出与负载隔离,避免潜在的稳定性问题。

有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图1.高压可调偏置电路的传统方法
在某些情况下,这些电路工作得非常好。当需要更高的精度或更一致的长期性能时,利用IC实现反馈是有益的。
IC反馈实现
图2所示电路的配置考虑了以下设计目标:
  • 控制电压:0 V至5 V
  • 输出电压可调范围:~0 V至110 V
  • 输出电流 > 10 mA
  • 初始精度:±0.1%(典型值)
  • 无需外部精密电阻
图2中的电路主要由三部分组成:控制电压、积分器和反馈路径。如上文所述,反馈由集成电路而非电阻网络提供。
控制电压输入范围为0 V至5 V。22倍电路增益提供从~0V (0 V×22)到110 V (5 V×22)的输出偏置电压。为了产生控制电压,选择 AD5683R。AD5683R是一款内置2 ppm/°C基准电压源的16位nanoDAC®。选择5 V输出范围,使电路能以~1.68 mV步进提供从~0 V到110 V的偏置电压。
积分器选择 LTC6090 。LTC6090是一款高压运算放大器,能够提供轨到轨输出和皮安级输入偏置电流。低输入偏置电流对于实现所需的高精度至关重要。此外,LTC6090提供的开环增益典型值大于140 dB,因此有限环路增益导致的系统误差大大减小。
LTC6090将反馈电压与控制电压进行比较,并将差值(即误差)积分,从而将输出(VBIAS)调整到所需的设定值。由R1和C1形成的时间常数设定积分时间,这不会影响放大器精度,因此不需要精密元件。为进行测试,负载建模为11 kΩ电阻与2.2μF电容并联。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图2.~0 V至110 V偏置的LTspice®原理图
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图3.LT1997-2设计工具的屏幕截图,衰减 = 22
LT1997-2 差动放大器为反馈环路提供22倍(增益 = 0.4545...)的衰减。实现22倍衰减所需的连接可以通过 LTC1997-2在线计算器轻松确定。该工具的屏幕截图如图3所示。
LT1997-2非常灵活,支持广泛的增益/衰减组合。数据手册中提供了示例,评估板 通过跳线可选设置支持许多增益组合。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图4.LT1997-2评估板(增益通过跳线和附加导线设置)
测试设置
电路在LTspice中建模并符合设计目标。使用以下评估板来帮助进行硬件测试:
  • EVAL-AD5683R:AD5683R DAC评估板
  • DC1979A:LTC6090 140 V轨到轨输出运算放大器评估板(经修改以用于测试)
  • DC2551A-B:LT1997可配置精密放大器演示板(经修改以用于测试)
  • DC2275A:LT8331升压器演示板,10 V ≤ VIN ≤ 48 V,120 VOUT,电流最高80 mA
  • DC2354A:LTC7149降压器演示板,配置为负VOUT
    3.5 V ≤ VIN ≤ 55 V;VOUT = –3.3 V/–5 V/可调至-56 V,最高4 A

产生控制电压

利用AD5683R评估板设置电路的控制电压。该板通过USB端口连接到运行 ADI公司ACE(分析、控制、评估)软件的笔记本电脑。ACE提供了一个简单的GUI来配置AD5683R并设置DAC输出电压。输出电压提供高压偏置输出的设定值。

图5.测试配置框图
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图6.AD5683R评估板的ACE界面截图

直流精度

表1和图7中的测量在24°C环境温度下使用Keysight 34460A DMM进行的。AD5683R评估板的输出校准到四个小数位,并通过ADI公司的ACE软件进行控制。这些结果来自一组电路板,不代表最小/最大规格。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
表1.实测输出电压与预期输出电压
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图7.输出电压误差与偏置电压的关系
请注意,在~40 V输出以下,误差由电路内的放大器失调主导。在低偏置电压下,失调的幅度比增益误差更大。在较高偏置电压下,失调贡献的误差百分比较小,增益误差占主导地位。本文后面会提供误差分析和更详细信息。

交流响应

将一个阶跃函数应用于不同电压的控制输入。测量输出和反馈电压(参见图8至图10)。请注意,偏置电压以斜坡形式平滑地变至所需的值。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图8.阶跃响应(0 V至1 V控制输入)
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图9.阶跃响应(0 V至2.5 V控制输入)
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图10.阶跃响应(0 V至5 V控制输入)
启动波形
观察电源和信号的启动波形。这是为了确保不会将高电压意外应用于偏置输出。AD5683R提供从0 V开始的控制电压。随着电源电压升高,在偏置输出端观察到~3V的小毛刺。鉴于偏置输出的高压性质,这对测试目的而言是可以接受的。
如果要在生产系统中使用该电路,建议控制电源时序,使得控制电压首先应用,然后高压电源启动。该上电顺序将能避免启动过程中偏置电压输出端出现高压尖峰对的可能性。一款简单的时序控制器(如 ADM1186 )便足以实现该功能。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图11.启动波形—电源
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
图12.启动波形—信号

测试设置照片

LTC6090评估板安装在LT1997-2评估板的底部。测试设置只需要修改这些评估板。DAC和电源评估板以库存配置使用,为简单起见不予以显示。

有没有一种简单的办法来创建适合传感器偏置应用的高压电源?

图13.LT1997-2评估板和安装在底部的LTC6090评估板

误差分析

我们执行了误差分析。电路中的主要误差源及其典型值和最大值如表2所示。

经计算,110 V偏置输出时的最大误差为0.0382%或42 mV,其中包括器件变化和全温度范围(-40°C至 125°C)内的变化所产生的全部误差。经计算,110 V偏置输出时的典型误差为0.00839%,这与实测结果(0.008%或9 mV)相吻合。

关于电源的说明

测试期间使用的硬件由±5 V、24 V和120 V电源供电。以下是关于如何选择这些电源轨的一些附加说明:

  • AD5683R DAC需要5 V电源。
  • 为了实现DAC的5 V输出,电源电压可能必须略高于5 V。即使小负载也可能限制最大输出值。有关其他信息,请参阅 AD5683R数据手册 第15页上的图38。
  • -5 V是为了让LTC6090和LT1997-2能在接近0V的控制电压输入下工作。
  • LTC7149评估板能够提供最高4 A输出。
  • 电路在-5 V时需要的电流小于25 mA,简单的电荷泵逆变器就足够了。作为例子,可以考虑ADP5600。
  • LTC6090的输入共模范围以比V-高 3 V为限。
  • 为方便起见,使用LTC7149演示板来产生-5 V轨。
  • 120 V用于LTC6090的V 。
  • 虽然LTC6090提供轨到轨输出,但在重负载下,V 需要额外的裕量。
  • 24 V用作LT1997-2的正电源。
  • 选择该电压是为了避免Over-The-Top®操作。LT1997-2的某些特性在Over-The-Top区域中会劣化。有关其他信息,请参阅 LT1997-2数据手册 的第14页。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
表2.输出电压误差分析
* 包括器件变化和全温度范围
** 25°C时
IC反馈与传统电阻网络反馈的比较
我们来比较图1所示传统方法与图2所示IC反馈方法的几个设计指标。对于此比较,选择LT1997-2(参见图14)作为反馈网络的IC。请注意,LT1997-2中嵌入了高度匹配的精密电阻。
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
表3.LT1997-2与两个1206分立精密电阻的比较(注意:选择1206是因为其工作电压为200 V)
*RT1206BRD07150KL,千片价格来自Digi-Key 2020年12月的数据
LT1997-2IDF#PBF,千片价格来自ADI网站2020年12月的数据
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
表4.LT1997-2与金属膜电阻网络比较
Y0114V0525BV0L,500片价格来自Digi-Key 2020年12月的数据
LT1997-2IDF#PBF,500片价格来自ADI网站2020年12月的数据
有没有一种简单的办法来创建适合传感器偏置应用的高压电源?
表5.LT1997-2与硅基精密电阻比较
*MAX5490VA10000 ,千片价格来自Maxim网站2020年12月的数据
LT1997-2IDF#PBF,千片价格来自ADI网站2020年12月的数据
虽然LT1997-2比两个芯片电阻贵得多,但其性能要好得多。与金属膜电阻网络相比,LT1997-2在尺寸和成本方面均有优势。与硅基电阻网络相比,LT1997-2在精度和工作电压方面有优势。此外,相比于所有竞争解决方案,LT1997-2内集成不同电阻值是一个优点,在需要的时候能够通过外部跳线提供增益灵活性。
使用集成精密电阻的IC还有一个可能不是很明显的优点。放大器的求和结埋在器件内,未暴露给PCB。因此,这些敏感节点得以免受干扰输入的影响。另外,在许多增益配置中,内部电阻外接到地或输出,避免了可能影响电路精度的泄漏路径。泄漏路径是较高电压电路中的常见误差源。
结论
可调高压偏置电路传统上采用运算放大器,通过电阻反馈网络产生精密输出。虽然这种方法很容易理解,但实现精密、可重复的性能很困难。利用IC而不是电阻网络来提供反馈,可以提供更准确、更一致的结果。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭