当前位置:首页 > > strongerHuang
[导读]关注星标公众号,不错过精彩内容转自|麦克泰技术在FreeRTOS中,每个任务都拥有自己的堆栈,该堆栈的大小由创建任务时xTaskCreate函数的函数参数所决定。但当任务所使用的堆栈空间超出分配给它的空间时,则会发生堆栈溢出,堆栈溢出可能修改超过合法访问地址范围外的数据,严重时会...

关注 星标公众号,不错过精彩内容



转自 | 麦克泰技术



在FreeRTOS中,每个任务都拥有自己的堆栈,该堆栈的大小由创建任务时xTaskCreate函数的函数参数所决定。


但当任务所使用的堆栈空间超出分配给它的空间时,则会发生堆栈溢出,堆栈溢出可能修改超过合法访问地址范围外的数据,严重时会导致Hardfault令系统崩溃。


如何设定合理的任务堆栈大小以避免发生堆栈溢出问题呢?


首先我们需要根据任务函数运行过程中的理论堆栈使用最大值,在任务创建时设定一个合理的任务堆栈大小,并实际运行程序进行测试,来确保系统运行过程中不会发生堆栈溢出。


FreeRTOS中的任务堆栈溢出检测机制:


在FreeRTOS中,也提供了一些API函数用来检测任务堆栈的使用情况,例如:


uxTaskGetStackHighWaterMark (TaskHandle_t xTask)——返回自任务运行以来剩余可用堆栈空间的最小值


要使用上述函数,需要在FreeRTOSConfig.h头文件中使能宏“#define INCLUDE_uxTaskGetStackHighWaterMark      1”。该函数会返回任务运行过程中剩余可用堆栈空间的最小值,即任务运行过程中堆栈最大使用量时还剩余多少空间,如果函数返回0则说明可能发生了任务堆栈溢出。在应用中调用该函数可以帮助了解任务堆栈的一个实际使用情况。


FreeRTOS中还提供了两种堆栈溢出检测方式,需要在FreeRTOSconfig.h头文件中通过宏#define configCHECK_FOR_STACK_OVERFLOW  来进行选择使能:


两种检测方式在检测原理上存在一些差别,检测方式1是检测运行过程中的任务栈指针,检测方式2则是检测初始化后的数据在运行过程中是否被修改。


如果任务堆栈溢出检测函数检测到发生了堆栈溢出,则会调用对应的钩子函数(钩子函数需用户手动创建),用户可以在钩子函数中执行想要的操作例如打印发生错误的任务名等。


内核在什么时候执行任务堆栈溢出检测:


FreeRTOS源码 tasks.c 文件中可以查到taskCHECK_FOR_STACK_OVERFLOW在 void vTaskSwitchContext( void )函数中被调用,也就是在任务上下文切换的时候做检测。从这点可以看出软件检测栈溢出的方式具有一定的滞后性,需要在任务发生上下文切换时才会进行,任务堆栈溢出时并不能马上检测到问题。


任务堆栈溢出检测存在的局限性:


如上文所述,只有在发生任务上下文切换时才会执行任务堆栈溢出检测,发生如下错误情形时则无法检测到了:


•     任务执行的过程中出现过栈溢出,但任务切换前栈指针又恢复到了正常水平。


•     任务栈末尾的 16 个字节没有用到,即不会被修改,但是任务栈已经溢出了


•     任务栈溢出后,把系统中的重要数据修改了导致系统直接进入Hardfault


FreeRTOS提供的堆栈溢出检测会引入任务上下文切换的开销,因此仅推荐在应用开发或者测试阶段使用。虽然存在一定的局限性,但大多常见情况下这些检测机制依然是非常实用的功能,可以帮助用户减少代码中的错误并提高应用程序代码的质量。



声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。


------------ END ------------



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭