当前位置:首页 > 电源 > 电源
[导读]直流电动机结构简单,工作稳定可靠,较易实现伺服控制。本文以PIC16F1508单片机为控制器,运用其PWM模块和CWG模块产生带死区的互补PWM波形,输入给H桥驱动的上下桥臂,有效

直流电动机结构简单,工作稳定可靠,较易实现伺服控制。本文以PIC16F1508单片机为控制器,运用其PWM模块和CWG模块产生带死区的互补PWM波形,输入给H桥驱动的上下桥臂,有效解决了直流电动机H桥驱动上下桥臂的直通问题。

引言

直流电动机是最早发明的电动机,也是最早实现调速的电动机。在大多数调速场合,优先选择的还是直流电动机,因为其价格便宜、调速较易实现,且调速效果相对平稳。目前,直流电动机仍被广泛应用于智能玩具与按钮调节式汽车座椅中。

1 直流电动机伺服系统组成

直流电动机伺服系统主要包括控制器PIC16F1508、光电隔离电路、驱动电路、速度检测与电平转换电路,如图1所示。

 

 

图1 直流电动机伺服系统框图

2 伺服系统的硬件设计

2.1 PIC16F1508

PIC16F1508是Microchip公司的一款8位闪存单片机,与Microchip其他单片机相比,增加了一些特色功能模块,比如互补波形发生器模块(CWG)、可配置逻辑单元模块(CLC)及数控振荡器模块(NCO)等。在直流电动机伺服系统中主要使用CWG模块。

互补波形发生器模块(CWG)具有针对所选择的输入源产生带死区延时的互补波形的功能[2]。简言之,CWG模块能对所选的输入源产生双输出的互补波形,而且还带有一定时间的死区延时。在本伺服系统中,通过CWG模块选用特定的PWM输入源,产生带有死区延时的互补PWM波形,输出给H桥的上下桥臂,有效地避免了上下开关管的直通问题,是本伺服系统中的一大优势。此外,通过单片机本身产生带死区的PWM波形,不仅使系统可调和稳定,而且整个系统结构更加紧凑,成本大大降低。

2.2 光电隔离电路

为了保护PIC控制器的安全并有效抑制信号干扰,在控制器和H桥之间增加了光电隔离芯片HCPL4504。其对PIC16F1508输出的4路PWM脉冲进行光电隔离,其中一路PWM信号输出的光电隔离电路如图2所示,其他3路类似。

 

 

图2 PWM信号输出光电耦合隔离电路

2.3驱动电路

直流电动机可逆系统的驱动主要包括双极性驱动和单极性驱动。双极性驱动是指在一个PWM周期里,电动机电枢的电压极性呈正负变化;而单极性是在一个PWM周期内,电动机电枢只承受单极性的电压[3]。此系统采用单极性驱动,而单极性驱动又有T型和H型之分,应用较多的是H型,如图3所示。

 

 

图3 H型单极性可逆PWM 驱动系统

由图3可知,H型单极性可逆PWM 驱动系统主要由4个MOSFET管构成。本系统H桥上桥臂均为PMOS管,下桥臂均为NMOS管,有效地避免了均使用NMOS或均为PMOS时所需的升压或降压电路,降低了电路的复杂性,并相对提高了系统的稳定性。

此外,MOSFET管是电压型驱动元件,P MOS管和N MOS管的G极驱动电路都采用的是低成本、制作简单的三极管驱动,具体电路如图4和图5所示。整体的H桥驱动电路如图6所示。

 

 

图4 PMOS驱动电路

 

 

图5 NMOS驱动电路

 

[!--empirenews.page--]

 

图6 H桥驱动电路

2.4 速度检测与电平转换电路

直流电动机的速度检测方法有采用霍尔传感器检测、光电编码器检测及直流测速发电机检测。本系统选用的是直流测速发电机来检测速度。将直流测速发电机安装在被测直流电动机轴上,以与被测电动机相同的转速旋转。选用的直流测速发电机型号是ZCF221A,直流电动机速度的获得是通过直流测速发电机反馈电压来检测的,考虑到直流发电机输出-50~50 V电压,远超出A/D转换采集输入信号范围,所以需要进行电平转换。

本系统先通过精密稳压元件TL431将电压降到2.5~7.5 V,然后采用的是高精度差分放大器INA132。INA132能够构成减法电路,使电压满足A/D采样电路的输入要求;此外,还具有中等输入阻抗、闭环和固定增益的模块,可在有接地回路及噪声的情况下进行信号采集。INA132差分增益为固定的1/2或1,具有较高的共模抑制比。具体电平转换电路如图7所示。

 

 

图7 电平转换电路

3 伺服系统的软件设计

直流电动机伺服控制的软件主要由3部分组成:主程序、PWM周期中断子程序、A/D转换中断子程序。

3.1 主程序

主程序主要包括各I/O输入输出状态的设定、PWM模块配置、CWG模块设置,然后等待中断响应,如图8所示。主程序的模块配置比较简明,使得程序占用资源少、可移植性好。

 

 

图8 主程序流程图

3.2 PWM周期中断子程序

PWM周期中断子程序在达到采样周期进行采样后,通过与测速发电机基值的比较,然后再乘以相应的转换系数,得出速度实际值,然后对速度进行PI调节,具体流程图如图9所示。

 

 

图9 PWM周期中断子程序流程图

3.3 A/D转换中断子程序

A/D转换中断子程序主要功能是在连续自动采样和A/D转换后申请A/D中断,即将反馈输入的模拟信号转换成数字信号,在A/D转换中断子程序中读出速度转换结果。具体流程图如图10所示。

 

 

图10 A/D转换中断子程序流程图

4 实验现象与结论

系统上电后,通过PWM模块和CWG模块程序的运行,用示波器检测到带死区延时的互补的PWM波形,具体如图11所示。它能有效地避免驱动H桥电路中上下桥臂的直通,为整个系统的稳定运行奠定了基础。

经过测试,当PWM频率为4 kHz时,直流电动机调速如图12所示。由图可知,直流电动机的转速与PWM的占空比呈比例关系。理论转速与实际转速求差后与理论值相比较的值是相对误差,18组相对误差的平均值为0.15%,满足应用的要求。

 

 

1—PWM波形,2—带上升沿死区的PWM波形,3—带下降沿死区的PWM波形

图11带死区的互补PWM波形实验图

 

 

图12 直流电动机开环控制时转速

总之,以单片机PIC16F1508为控制器,运用其特有的互补波形发生器模块(CWG),通过H桥驱动直流电动机,并用直流测速发电机检测速度并反馈给单片机的伺服系统。仅用单片机就能够输出带死区的互补波形,不仅使整个系统结构相对简单、比较稳定,而且使系统成本大大降低,为直流电动机伺服系统研究者提供了一定的参考和借鉴。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭