当前位置:首页 > 电源 > 电源
[导读] 引言现代电子系统的复杂度日益提高。在一块系统板上,可能有大量电源轨和电源解决方案为很多不同的负载供电。在选择或设计每个单独的电源之前,系统硬件工程师首先需要了解

 引言

现代电子系统的复杂度日益提高。在一块系统板上,可能有大量电源轨和电源解决方案为很多不同的负载供电。在选择或设计每个单独的电源之前,系统硬件工程师首先需要了解系统的电源需求,然后设计相应的系统电源树,以优化电源管理系统的效率、尺寸和成本。由于系统太复杂,有时系统级电源优化并非一项微不足道的任务。简便易用的系统级设计工具可满足这种需求。

什么是 LTpowerPlanner 工具?

LTpowerPlanner 程序是一种系统级电源树设计工具,帮助系统设计师规划、设计和优化电源管理系统。该程序提供一个简便易用的图形用户界面 (GUI),极大地简化了系统级设计任务。

LTpowerPlanner 工具帮助用户:

● 绘制 “电源树” 型系统方框图

● 计算 / 估计系统总的输入功率、输出功率、功耗、效率和电路板尺寸

● 比较不同的电源架构,实现系统级优化

● 与 LTpowerCAD 电源设计工具和 LTspice 电路仿真工具连接

● 简便地记录和显示系统级解决方案

LTpowerPlanner 设计工具是 LTpowerCAD 设计工具程序的组成部分。要打开 LTpowerPlanner 工具,用户可以点击 LTpowerCAD 主页上的 “System Design (系统设计)” 图标,如图 1 所示。LTpowerCAD 程序是一款离线程序,在 Windows PC 上运行。

 

 

图 1:点击 “System Design” 图标,打开 LTpowerPlanner 工具

LTpowerPlanner 的三个基本设计步骤

下面是开始使用 LTpowerPlanner 设计工具的三个基本步骤。

步骤 1:绘制系统电源树

图 2 给出了一个用 LTpowerPlanner 工具绘制一个简单的系统电源树之例子。在电源树中有 3 种关键组件:输入电源、电源转换器和负载设备。电源组件仅有输出端子,负载组件仅有输入端子。至于每个转换器组件,左侧端子是电源输入端子,右侧端子是电源输出端子。转换器组件可能有多个输出轨,以构成多通道电源。类似地,负载组件有多个输入轨端子。

 

 

图 2:绘制系统电源树

用户可以先放置这些组件,然后用电源线从左到右连接这些组件,从左到右是缺省的电流 / 功率流动方向。

步骤 2:更新组件参数

用户可双击每个组件以更新其在 “Properties (属性)” 窗口中的关键电源参数,例如输入电压范围、输出电压、最大负载电流等。用户还可以为每个电源转换器组件输入预期效率和估计的尺寸,以进行系统计算,参见图 3。

 

 

图 3:更新关键转换器参数

步骤 3:进行系统计算

用户完成了电源树并更新了所有关键参数后,就可以进行系统计算了。基于每个组件的输入参数,程序计算并在屏幕上的 “Summary Report (报告总结)” 中显示以下数值:系统总的输入功率、输出功率、功耗、效率以及转换器的 PC 电路板面积之和。如图 4 所示,在每个组件的端子上,也显示其输入或输出电压和电流。每个转换器的效率和功耗在转换器的下面显示。每个负载和电源的功率也会显示出来。这个 GUI 界面可以非常简便地向系统工程师显示大量系统电源树的详细信息。

 

 

图 4:进行系统计算

比较电源树以实现系统优化

LTpowerPlanner 工具可用来比较不同的电源架构,以实现最佳系统解决方案。图 5 所示的简单例子比较了两个略有不同的电源树选择 A 和 B。在这个例子中,LTpowerPlanner 工具显示,从A 到 B 虽然只有很小的架构改变,但可很快地提高了系统效率。

 

 

图 5:比较两个电源系统架构 (A 和 B)

一个 FPGA 电源树的例子

LTpowerPlanner 工具可用来绘制复杂得多的系统。图 6 给出了一个例子。在这个例子中,有多输出电源转换器和多输入负载。电压相同的多个输出端子也可以并联,以实现电流均分。这个例子中还有电阻性组件,可用来表示压降和功耗。请查阅 LTpowerPlanner 用户指南,详细了解该工具的先进特性和功能。

 

 

图 6:FPGA 电源树例子

将转换器连接到 LTpowerCAD 电路设计工具或 LTspice 仿真工具

尽管 LTpowerPlanner 程序是一款通用系统工具,但是它允许用户将电源转换器连接到由 LTpowerCAD 电源设计工具和 LTspice 电路仿真工具产生的已有设计和仿真文件上。为了实现这种连接,在转换器 “Properties” 窗口中,用户需要将转换器连接到其 PC 磁盘上的特定文件。建立连接后,用户可以通过点击相应的 LTpowerPlanner 转换器图标,直接打开已连接的 LTpowerCAD 设计文件或 LTspice 仿真文件,如图 7 所示。这一功能为组织一个电源管理系统的所有设计文件提供了一种便利的系统化方法。

 

 

图 7:连接到已有 LTpowerCAD 和 LTspice 文件

电源树解决方案库

LTpowerPlanner 还有一个内置的电源树解决方案库,为用户提供了很多电源树参考设计。如图 8 所示,通过点击 “Solution Library (解决方案库)” 软键,用户可以利用很多面向 FPGA、处理器、数据通信、汽车系统等应用的已有解决方案。这些已有设计可节省工程师了解和设计类似电源管理系统的时间。此外,用户还可以保存他们的设计,建立一个用户解决方案库以备日后使用。

 

 

图 8:LTpowerPlanner 电源树解决方案库

总结

总之,LTpowerPlanner 设计工具可帮助系统工程师以非常有效和简便的方式设计和优化电源管理系统。基于用户的输入,该工具计算系统总的输入功率、输出功率、功耗、效率和物理尺寸。系统设计师可用这个工具绘制、设计、比较和优化电源系统树。这个工具还用来简便地记录和显示系统的电源架构。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

人工智能(AI)的迅速发展开启了高密度计算需求的新时代,而传统电源架构逐渐难以适应这一需求发展。为更好地响应此类需求,Analog Devices, Inc. (ADI)推出创新解决方案,为数据中心下一代800 VDC架...

关键字: 人工智能 数据中心 电源架构

与计算和仿真工具相比,电源架构的设计工具并未得到广泛使用。然而,这些工具在电路电源系统的开发过程中起到至关重要的作用。作为电源开发流程的初始环节,这些工具为创建出色的电源架构奠定了基础。

关键字: 电源架构 电路电源系统 电源管理

在汽车产业的发展历程中,电源架构的每一次变革都深刻影响着车辆的性能、效率与功能拓展。从早期的 6V 系统到后来占据主导地位长达 60 年的 12V 系统,每一次电压标准的提升都是为了应对汽车日益增长的电力需求。而如今,随...

关键字: 电源架构 电力需求 48V

伟创力的新解决方案使云服务提供商能够应对人工智能时代的电源、散热和规模挑战 新闻摘要 伟创力发布用于人工智能数据中心的新型计算、机架和中间总线转换器产品 伟创力和JetCool®合作推出直接到芯片层级散热的...

关键字: 人工智能 伟创力 数据中心 电源解决方案

伊利诺伊州莱尔 – 2024年10月15日 – 全球电子行业的领军企业及连接技术创新者Molex莫仕公司发布了一份报告,探讨48V电气系统技术迅速兴起,这项技术有望大幅提升汽车性能、效率、功能性和舒适性。Molex莫仕公...

关键字: 电源架构 48V电气系统 连接器

在数据采集(DAQ)系统中,电源架构的设计是确保系统稳定运行和高效性能的关键因素之一。随着技术的不断进步,非隔离DC/DC电源降压模块因其独特的优势,在DAQ应用中得到了广泛应用。本文将深入探讨在DAQ系统中使用非隔离D...

关键字: 数据采集 电源架构 DAQ

业界需要一种新的供电架构来控制生成式人工智能训练模型的能源消耗

关键字: 生成式人工智能 电源架构

与前代产品相比,采用 MagPack™ 封装技术,使得电源模块的尺寸缩小多达 50%。在保持同样的散热性能的前提条件下,电源模块的功率密度增加一倍。 与前代产品相比,业界超小型 6A 电源模块可将电磁干扰 (E...

关键字: 德州仪器 电源模块 封装技术 电源解决方案

全球电源解决方案领导者全汉集团将于2024 年台北国际电脑展(Computex 2024) 上展示其创新产品。包含边缘AI、网路通讯和 USB PD 电源解决方案。

关键字: USB 电脑 通讯 电源解决方案

我如何为数据中心供电? 克劳德·香农 (Claude Shannon ) 于 1948 年撰写“通信的数学理论”时开始了这一切,他将信息的通信简化为 1 和 0,本质上是二进制数字。该理论导致了在现实世界充满噪音的...

关键字: 数据中心 电源解决方案
关闭