当前位置:首页 > 电源 > 电源
[导读]开关电源设计实例之保护电路实例详解之过温保护电路

开关电源设计实例之保护电路实例详解之过温保护电路

过温保护电路

1概述(电路类别、实现主要功能描述):

该电路属于过温保护电路,但温度高于设定的保护点时,关闭模块输出,当温度恢复后自动开启模块。

2电路组成(原理图):

过温保护电路-热敏电阻

1概述(电路类别、实现主要功能描述):

本电路采用热敏电阻检测基板温度,热敏电阻阻值随基板温度变化而变化, 热敏电阻阻值的变化导致运放输入电压变化,从而实现运放的翻转控制PWM芯片的输出,进而将模块关闭。

2电路组成(原理图):

3工作原理分析(主要功能、性能指标及实现原理,关键参数计算分析):

R99热敏电阻是负温度系数热敏电阻,常温时,R99=100k,R99与R94的分压0.45V为U2运放的负输入,远低于运放的正输入2.5V(R23与R97分压),因此运放的输出是高电平,对LM5025的SS端无影响,模块正常工作。

随着基板温度升高,R99电阻阻值减小,当减小到一定值时,使得运放的负输入大于正输入时,运放输出低电平,将LM5025的SS拉低,从而关闭模块输出;温度保护点可以适当调整R94,R23,R97的阻值而相应地调整。

模块关闭输出后(过温保护),基板温度会降低,R99阻值会增大,运放的负输入会降低,为使运放的正常翻转,引入电阻R98,原理是运放输出低后,R98相当于与R97并联,将运放的基准变低,拉开运放正负输入的电压间距,从而实现温度回差。比如基板温度90℃时保护,80℃时开启。

4关键参数计算分析

4.1 运放正输入电压:VR97=Vref2=5/(1+R23/R97)=5/(1+10/10)=2.5V

4.2 运放负输入电压VR94+0.007=VR97=5*R94/(R99+R94)+0.007,

4.3 得出温度保护时热敏电阻的阻值:R99(t)=(Vref*R24/(Vref*R97/(R23+R97)-0.007))-R94

4.4 考虑容差时的计算见下表:

4.5 过温保护时,R99的值

4.6 R99-SDNT2012X104J4250HT(F)是负温度系数的热敏电阻,25°C时100k,过温保护时阻值10k左右(见上表),计算温度为:

Rt=R*e(B(1/T1-1/T2)) T1=1/(ln(Rt/R)/B+1/T2))

T2:常温25°C,上式中T2=273.15+25=298.15;B:4250±3%;R:25°C时的电阻值,100k,计算出的T1值也是加了273.15后的值,因此下表中t1=T1-273.15,是摄氏度。 Rt:温度变化后的阻值,10k,9.704k,10.304k,见上表

4.7 回差

运放输出低后,电阻R98(51k)就并在R97上,将基准拉低,新的基准电压 Vref1=Vref*(R98//R97)/(R23+R98//R97)=2.28V 达到2.44V时,R99的阻值R99=Vref*R94/Vref1-R94=11.9k R99达到10.49k时,温度按下表计算

温度回差=82.6-77.3=5.3℃

5电路的优缺点

优点: 温度保护点及温度回差很容进行调整

缺点: 温度准确度偏低

电路比采用温度开关略复杂

温度保护时反映的是热敏电阻附近的基板温度,不能反映模块的最高器件的温度,不过这可以在设计时解决,比如基板温度在90℃保护,实际板上器件最高温度已达130℃,就可以适当调整温度保护点,从而起到保护作用。

6应用的注意事项

尽量将热敏电阻放置在发热器件附近。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

-三款新器件助力提升工业设备的效率和功率密度-

关键字: SiC MOSFET 开关电源

在新能源发电、电动汽车、数据中心等直流供电系统中,过压故障是导致设备损坏的主要诱因之一。据统计,电力电子设备故障中约35%与过压事件相关,其中直流侧过压占比达62%。本文以基于TVS二极管与MOSFET的复合型直流过压保...

关键字: 直流过压 保护电路

在现代科技飞速发展的时代,电子产品已广泛渗透到人们生活和工业生产的各个角落。从日常使用的手机、电脑,到工业生产中的各类精密设备,都离不开稳定可靠的电源供应。而开关电源系统作为电子产品的核心供电部件,其性能与稳定性至关重要...

关键字: 开关电源 雷电 浪涌

开关电源凭借其体积小、重量轻、效率高的显著优势,在现代电子设备中广泛应用。然而,由于其工作在高频开关状态,不可避免地会产生电磁干扰(EMI)。这种干扰不仅会影响自身性能,还可能对周围其他电子设备的正常运行造成严重干扰。因...

关键字: 开关电源 电磁干扰 高频

PCB设计在EMI抑制中起着关键作用。合理的布局布线能够有效减少信号的电磁辐射和相互干扰。首先,应将功率电路和控制电路进行物理隔离,避免功率电路中的大电流、高电压信号对控制电路造成干扰。功率器件和电感等高频器件应尽量靠近...

关键字: LED 开关电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

同步整流和非同步整流是开关电源中两种不同的整流方式,它们的主要区别在于续流回路中使用的元器件及其控制方式。

关键字: 电流 开关电源

在现代电子设备的庞大体系中,开关电源宛如一颗璀璨的明珠,凭借其高效、紧凑、灵活等诸多卓越特性,广泛应用于从日常电子消费品到复杂工业设备的各个领域。从我们爱不释手的智能手机、平板电脑,到功能强大的服务器、精密复杂的医疗设备...

关键字: 开关电源 电子设备 供电

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

在开关电源实际布线时,首先要根据实际应用,仔细分清楚各种地线的种类,然后依据不同地线的特点和电路的需求选择合适的接地方式。不论采用何种接地方式,都必须始终遵守 “低阻抗,低噪声” 的原则,以确保接地的有效性,减少电磁干扰...

关键字: 布线 开关电源 电磁干扰
关闭