当前位置:首页 > 电源 > 电源
[导读]等离子和液晶电视如今已经走入了千家万户,这两种电器的开关电源设计比较特殊,只能采用有源或者无源PFC模式,并且需要能够长时间在无散热通风的环境下工作。这就要求电源不

等离子和液晶电视如今已经走入了千家万户,这两种电器的开关电源设计比较特殊,只能采用有源或者无源PFC模式,并且需要能够长时间在无散热通风的环境下工作。这就要求电源不仅要拥有高功率密度和平滑的电磁干扰信号,还要尽量少的使用元器件。而在这些方面,半桥LLC谐振转换器拥有诸多的优势。

半桥LL谐振电容和谐振电感的配置

单谐振电容和分体谐振电容都存在于半桥转换器当中。如图1所示。对于单谐振电容配置而言,它的输入电流纹波和均方根(RMS)值较高,而且流经谐振电容的均方根电流较大。这种方案需要耐高压(600~1,500V)的谐振电容。不过,这种方案也存在尺寸小、布线简单等优点。

(a)单谐振电容;(b)分体谐振电容。

图1:半桥LLC转换器的两种不同配置

分体谐振电容相较于单个谐振电容而言,其输入电流纹波和均方根值较小。谐振电容仅处理一半的均方根电流,且所用电容的电容量仅为单谐振电容的一半。当利用钳位二极管(D3和D4)进行简单、廉价的过载保护时,这种方案中,谐振电容可以采用450V较低额定电压工作。

顾名思义,半桥LLC转换器中包含2个电感(励磁电感Lm和串联的谐振电感Ls)。根据谐振电感位置的不同,谐振回路也包括两种不同的配置,一种为分立解决方案,另一种为集成解决方案。这两种解决方案各有其优缺点,采用这两种方案的LLC的工作方式也有轻微差别。

将谐振电感安装在变压器外面是有目地的。其能够帮助设计者提高设计的灵活性,令设计人员可以灵活设置Ls和Lm的值;此外,EMI幅射也更低。不过,这种解决方案的缺点在于,变压器初级和次级绕组间的绝缘变得复杂,并且绕组的冷却条件变差,并需要组装更多元件。

(a)分立解决方案;(b)集成解决方案。

图2:谐振储能元件的两种不同配置

在另一种集成的解决方案中,变压器的漏电感被用作谐振电感(LLK=LS)。这种解决方案只需1个磁性元件,而且会使得开关电源的尺寸更小。此外,变压器绕组的冷却条件更好,且初级和次级绕组之间可以方便地实现绝缘。不过,这种解决方案的灵活性相对较差(可用的LS电感范围有限),且其EMI幅射更强,而初级和次级绕组之间存在较强的邻近效应。半桥LLC转换器建模和增益特性

LLC转换器可以通过一阶基波近似来描述。但只是近似,精度有限。而在Fs频率附近精度达到最高。

等效电路的传递函数为:

这其中,Z1和Z2与频率有关,由此可知LLC转换器的行为特性类似于与频率有关的分频器,负载越高,励磁电感Lm所受到的交流电阻Rac产生的钳位作用就越大。这样一来,LLC储能电路的谐振频率就在Fs和Fmin之间变化。在使用基波近似时,实际的负载电阻必须修改,因为实际的谐振回路是由方波电压驱动的。

相应地,转换器的品质因数为:

串联谐振频率Fs和最小谐振频率Fmin分别为:

图3:标准化增益特性(区域1和区域2为ZVS工作区域,区域3为ZCS工作区域)。

LLC转换器所需要的工作区域是增益曲线的右侧区域(其中的负斜率意味着初级MOSFET工作在零电压开关ZVS模式下)。当LLC转换器工作在fs=1(对于分立谐振回路解决方案而言)的状态下时,它的增益由变压器的匝数比来给定。从效率和EMI的角度来讲,这个工作点最具吸引力,因为正弦初级电流、MOSFET和次级二极管都得到优化利用。该工作点只能在特定的工作电压和负载条件下达到(通常是在满载和额定Vbulk电压时)。

增益特性曲线的波形及所需的工作频率范围由如下参数来确定:Lm/Ls比(即k)、谐振回路的特征阻抗、负载值和变压器的匝数比。可以使用PSpice、Icap4等任意仿真软件来进行基波近似和AC仿真。

图5:分立(a)和集成(b)谐振回路解决方案的仿真原理图。

对于LLC谐振转换器而言,满载时品质因数Q和Lm/Ls的恰当选择是其设计的关键。这方面的选择将影响到如下转换器特性:

输出电压稳压所需的工作频率范围;

线路和负载稳压范围;

谐振回路中循环能量的大小;

转换器的效率;

在设计当中,如果想要优化在满载状态时的Q和K,就要确定如下几个因素:效率、线路、负载稳压范围。品质因数Q直接取决于负载,它是由满载条件下的谐振电感Ls和谐振电容CS确定的。Q因数越高,就导致工作频率范围Fop越大。Q值较高及给定负载时,特征阻抗就必须较低,因为低Q会导致稳压能力下降,且Q值很低的情况下LLC增益特性会退化到SRC。

而在k=Lm/Ls方面,它决定了励磁电感中存储多少能量。k值越高,转换器的励磁电流和增益也就越低;且k因数越大,所需的稳压频率范围也就越大。

在实践中,Ls(如集成变压器解决方案的漏电感)只能在有限的范围内取值,而且是由变压器的构造(针对所需的功率等级)和匝数比决定。然后,Q因数的计算由所需的额定工作频率fs确定。这之后,k因数也必须计算出来,以确保输出电压稳压(带有线路和负载变化)所需的增益。而在设定k因数时,可以让转换器在轻载时无法维持稳压——可以方便地使用跳周期模式来降低空载功耗。

通过对实例的讲解,本文介绍了半桥LLC谐振转换器设计的部分要点和技巧,如配置、工作状态、增益特性等等。不仅如此,还对一些特定的参数进行了确定。希望本篇文章能够帮助大家增进对半桥LLC谐振转换器的了解。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

我们分别研究了准谐振和 LLC 谐振转换器的电路图和框图。准谐振转换器电路图看起来与反激式转换器非常相似,只是有一个检测电路来帮助确定电压最小值的时序。

关键字: 谐振转换器 电源效率

随着天然气价格飙升、欧洲大陆电价暴涨,近期刷新历史新高的能源价格正在持续冲击欧洲经济。欧洲工业企业纷纷就能源成本发出警告,科索沃200万人口已经轮流“断电”,企业、民众苦不堪言……更糟糕的是,交易员甚至在押注供不应求的紧...

关键字: 谐振转换器 电源效率

点击蓝字 关注我们在电源设计中,为提高能效,通常采用同步整流,即用MOSFET取代二极管整流器,从而降低整流器两端压降和导通损耗,实现更高的系统能效。然而,传统的同步整流在用于LLC谐振转换器时,会有不少的技术挑战,如:...

关键字: LLC谐振 谐振转换器 整流控制器

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。据最新一期《美国国家科学院院刊》报道,美国莱斯大学利用廉价塑料...

关键字: 氢燃料 电源技术解析 太阳能海水 淡化系统

在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。日前,科技部发布了《国家重点研发计划“可再生能源...

关键字: 电池组件 电源技术解析 钙钛矿 协鑫

随着社会的进步,科技的发展,人们对能源的需求越来越大,而现有的能源有限,需要人们不断发展新能源,而太阳能就是一个不错的选择,人们开始大力发展太阳能能发电。武汉大学高等研究院科研人员日前提出新的逐层刮涂技术,该技术不仅使薄...

关键字: 光伏技术 太阳能电池 电源技术解析 新涂膜技术

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。中国要实现在太空中建造一座兆瓦级太阳能发电站,将面临很多前所未有的挑战...

关键字: 太阳能电池 电源技术解析 石墨烯 传统硅片

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。储能电池技术是制约新能源储能产业发展的关键技术之一。光伏电站储能、风电...

关键字: 储能电池技术 电源技术解析 锂离子电池 碳铅电池

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。近日,自从进入夏季以来,持续的高温已经“蒸烤”一段时间了。据中...

关键字: 光伏电站 光伏组件 光伏逆变器 电源技术解析

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。在太阳能离网系统中,光伏控制器的作用是把光伏组件发出来的电,经...

关键字: 光伏控制器 太阳能 电源技术解析 离网系统
关闭
关闭