当前位置:首页 > 电源 > 数字电源
[导读]ADS1274/ADS1278是德州仪器(TI)推出的多通道24位工业模数转换器(ADC),内部集成有多个独立的高阶斩波稳定调制器和FIR数字滤波器,可实现4/8通道同步采样,支持高速、高精度、低功耗、低速4种工作模式;ADS1274/ADS1278具有优良的AC和DC特性,采样率最高可以达128 Ks/s,62 kHz带宽时信噪比(SNR)可达111 dB,失调漂移为0.8μV/℃。 ADS1274/ADS1278可通过设置相应的输入/输出引脚选择工作模式,无需寄存器编程,其数据输出可选帧同步或S

1 概述

ADS1274/ADS1278是德州仪器(TI)推出的多通道24位工业模数转换器(ADC),内部集成有多个独立的高阶斩波稳定调制器和FIR数字滤波器,可实现4/8通道同步采样,支持高速、高精度、低功耗、低速4种工作模式;ADS1274/ADS1278具有优良的AC和DC特性,采样率最高可以达128 Ks/s,62 kHz带宽时信噪比(SNR)可达111 dB,失调漂移为0.8μV/℃。

ADS1274/ADS1278可通过设置相应的输入/输出引脚选择工作模式,无需寄存器编程,其数据输出可选帧同步或SPI串行接口,便于连接至DSP、FPGA及微控制器。每个接口均支持菊花链,简化多通道计数系统中的多个ADS1274或ADS1278的回读功能(readback)。ADS1274工作温度范围为-40℃~+125℃,ADS1278则为-40℃~+105℃,可满足要求严格的多通道信号采集应用,包括振动分析、医疗监控、声学/动态应变测量及压力测量设备等。

2 性能特点

传统的具有较高漂移性能的工业△-∑ADC采用导通带宽滑落幅度很大的数字滤波器,来得尽可能满足DC测量需求的有限信号带宽。针对音频应用的高分辨率ADC能够提供更大的可用带宽,但偏移与漂移规范远低于工业ADC。ADS1274/ADS1278将两种类型的转换器相结合,实现最佳DC与AC规范的高精度工业测量。具体特点如下:

允许4/8通道同步采样;

采样率最高可达128 Ks/s;

AC性能:工作在高精度模式下,输入信号带宽为62 kHz时,SNR为111 dB,总谐波失真(THD)为-108 dB;

DC性能:0.8μV/℃失调漂移,1.3 ppm/℃增益漂移;

4种可选工作模式:高速模式为128 Ks/s,信噪比106 dB;高精度模式为52 Ks/s,信噪比111 dB;低功耗模式为52 ks/s,31 mW/通道;而低速模式为10 ks/s,7 mW/通道;

片上线性相位数字滤波器;

SPI或帧同步串行接口;

低采样孔径误差;

调制器输出选择。

3 引脚功能说明

ADS1274/1278均采用64引脚HTQFP封装,两者引脚兼容以便于扩展,引脚功能说明如表1所示。

4 功能描述

4.1 工作原理

ADS1274/ADS1278是△-∑型模数转换器,其结构框图如图1所示,两者除内部所含模/数转换器(ADC)数目不同外,功能完全相同。它们主要由4/8个独立的ADC并行实现4/8通道输入信号的数字化,每个ADC由先进的6阶斩波、△-∑调制器,后接低纹波、线性相位的有限冲积响应(FIR)数字滤波器构成。调制器检测差分输入信号VIN=(AINP-AINN),并与差分参考电压VREF=(VREFP-VREFN)相比较得到一个1秒密度的位流输出,输出的位流经内部的数字滤波器滤波后得到一个低噪声的数字输出。

工作时调制器以高速采样输入信号(典型值输出数据率的64倍),调制器产生的量化噪声被移人高频带,由其内部的数字滤波器滤除,调制器的过采样倍率与工作模式有关,分别可取64(高速、低速、低功耗模式)或128(高精度模式),数字滤波器可对截止频率外的信号衰减达100 dB,使信号导通带宽在90%的奈奎斯特频率时,纹波低于0.005 dB。

4.2 工作模式设置

ADS1274/ADS1278允许在速度、精度、功耗方面权衡从4种工作模式中选择一种,各种工作模式下的性能如表2所示,而模式选择是由MODE[1:0]引脚的输入状态确定。

4.3 数据输出接口

ADS1274/ADS1278转换后的数据输出采用串行接口,可采用两种接口协议:SPI协议和帧同步协议,同时也可选择不同的数据输出格式,协议和数据输出格式的选择是由FORFMAT[2:0]引脚的输入状态确定。

对应SPI和帧同步接口协议,转换后的数据或通过独立的DOUT引脚以并行数据形式(离散模式)移位输出或通过一个共同的引脚DOUT1(TDM模式)移位输出。

在TDM数据输出模式中,多通道输出数据的位置有两种选择,即位置固定和位置动态分配。位置固定时,每个通道输出数据的位置严格按照顺序输出(即使某些通道掉电,也占有一个输出位置),动态分配时多通道输出数据的位置可根据通道使用情况随机调整,后续通道数据可占有前面掉电不用通道数据的位置,图2和图3描述了TDM模式时,固定位置和动态位置时的数据输出形式,表3列出接口协议、输出格式和数据位置关系。

5 应用接口电路

5.1 基本差分输入信号接口电路

基本差分输入信号接口电路如图4所示,采用运算放大器OPA1632和RC构成的低通滤波器对输入信号进行调理,其中VCOM端可直接连接至ADC的VCOM引脚,也可通过OPA350缓冲输出,12 V电源可采用10μF和0.1μF的电容旁路,对于电容(2),当工作在低功耗模式时可选用2.7 nF的电容,在低速模式时则选用15 nF的电容。

5.2 ADS1724与TMS320的接口电路

图5给出了ASD1274与TMS320VC5509的接口电路,ADS1274与TMS320VC5509之间采用帧同步串行接口,CLKDIV接3.3 V,采样主时钟频率为27 MHz,四路模拟输入信号可采用图4所示的连接接入AINP和AINN。

6 结束语

ADS1274/1278是基于△-∑技术的24位高性能工业模数转换器,内部集成有多个独立的高阶斩波稳定调制器和FIR数字滤波器,具有优良的AC和DC性能,可实现4/8通道同步采样,支持高速、高精度、低功耗、低速4种工作模式;数据输出可选帧同步或SPI串行接口,每个接口均支持菊花链连接,可应用于要求严格的多通道信号采集系统,如振动分析、医疗监控、动态应变测量设备等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

根据前述文章,数字电源之我见(1)典型控制系统框图 中的介绍,控制一个数字电源,首要的一步就是要将模拟信号转换为数字信号,这部分工作由芯片内的ADC来完成,本文就ADC的典型结构及时钟分配,和分辨率特点,基本工作原理等特...

关键字: 数字电源 ADC

测试串扰时基本组件或阶段的简单框图。首先,对通道 1 上的干扰音应用一个滤波器,并测量作为参考捕获的输入。该滤波器确保来自信号发生器的所有其他噪声和谐波被衰减到足以不破坏施加的故意干扰信号。

关键字: ADC 串扰和隔离测试

在使用高速转换器和多个转换器通道的雷达、卫星以及测试和测量应用中,隔离或串扰可能是一种错误的衡量标准。在不考虑通道串扰的情况下,在频谱中丢失相关信息的可能性可能会对系统造成破坏,因为在感兴趣的应用频带中可能会出现杂散或噪...

关键字: ADC 串扰和隔离测试

滤波在几乎所有通信系统中都扮演着重要的角色,因为去除噪声和失真会增加信道容量。设计一个只通过所需频率的滤波器是相当容易的。然而,在实际的物理滤波器实现中,通过滤波器会损失所需的信号功率。这种信号损失会为模数转换器(ADC...

关键字: 滤波 ADC 噪声

2022年7月28日-在工业和汽车市场中,例如电机驱动、车载充电机、充电桩、光伏逆变器、储能等涉及高压、大功率的系统应用中, 受到电噪声、机械冲击、振动、极端温度、污染等恶劣影响的可能性较高,无论是哪种应用场景,工程师们...

关键字: 纳芯微 调制器 Sigma-Delta

在这篇文章中,我将介绍用于模拟 Vdd (AVDD) 和数字 Vdd (DVDD) 电源的 DC/DC 转换器。了解 ADC 电源引脚如何对 DC/DC 转换器作出反应至关重要,因为 DC/DC 转换器因其高功率效率而成...

关键字: DCDC ADC

运行模数转换器 (ADC) 设备有什么大不了的?将传感器输出连接到 ADC 输入并开始读取读数。正确的?毕竟,数字信号提供了强大的噪声抑制能力,因此电平之间的切换很牢固,并且有足够的内置余量。尽管如此,模拟信号更容易受到...

关键字: ADC ADC接地

我们已经花费了大量篇幅讨论如何添加速度更快、精度更高的 A/D 转换器。有些应用程序需要更高的功能。但大多数制造商已经在他们选择的模块上安装了一个“免费”的 A/D 转换器——集成在微控制器或片上系统 (SoC) 中。这...

关键字: ADC ADC使用

外部电压参考引脚可能允许更高的电压源(与数字电源轨相比)微控制器本身)以获得更宽的模拟输入范围,或更稳定的信号源以获得更高的精度。这有点过于简单化了。因此,电压参考因素如何转化为值得一看的。

关键字: 外部电压参考 ADC

本文评估在电阻模数转换器(ADC)前面的外部电阻的影响。这些系列的同步采样ADC包括一个高输入阻抗电阻可编程增益放大器(PGA),用于驱动ADC和缩放输入信号,允许直接连接传感器。但是,有几个原因导致在设计期间,我们最终...

关键字: ADI 模数转换器 电阻

数字电源

15504 篇文章

关注

发布文章

编辑精选

技术子站

关闭