当前位置:首页 > 技术学院 > 技术解析
[导读]为了增进大家对ADC的认识,本文将基于两个方面介绍ADC:1.ADC的实际应用、2.如何利用噪声扰动提高ADC无杂散动态范围。

ADC模数转换器的简称,在本文中不是游戏中的ADC哦。为了增进大家对ADC的认识,本文将基于两个方面介绍ADC:1.ADC的实际应用、2.如何利用噪声扰动提高ADC无杂散动态范围。如果你对ADC具有兴趣,不妨和小编一起继续往下阅读哦。

一、ADC实际应用

1.音乐录制

模数转换器是2000年代音乐再现技术和基于数字音频工作站的声音记录所不可或缺的。人们通常使用模拟记录在计算机上制作音乐,因此需要模数转换器来创建脉冲码调制(PCM)数据流,该数据流会进入光盘和数字音乐文件。当前用于音乐的模数转换器可以以高达192 kHz的速率采样。在这些问题上存在大量文献,但是商业考虑通常起着重要作用。许多录音棚采用24位/ 96 kHz(或更高)脉冲编码调制(PCM)或直接流数字录音(DSD)格式,然后对信号进行下采样或抽取,以进行光盘数字音频制作(44.1 kHz),对于常用的广播和电视广播应用,由于人类的奈奎斯特频率和听觉范围,将其降低到48 kHz 。

2.数字信号处理

要求ADC处理,存储或传输几乎任何数字形式的模拟信号。例如,电视调谐卡使用快速视频模数转换器。慢速片上8、10、12或16位模数转换器在微控制器中很常见。数字存储示波器需要非常快速的模数转换器,这对于软件定义的无线电及其新应用也至关重要。

3.科学仪器

数字成像系统通常使用模数转换器将 像素数字化。一些雷达系统通常使用模数转换器将信号强度转换为数字值,以进行后续信号处理。许多其他原位和遥感系统通常使用类似技术。所得数字化数值中的二进制位数反映了分辨率,xxx的离散量化级数(信号处理)。模拟信号和数字信号之间的对应关系取决于量化误差。量化过程必须以足够的速度进行,这可能会限制数字信号的分辨率。科学仪器中的许多传感器都会产生模拟信号。温度、压力、pH、光强度等。所有这些信号都可以放大并馈送到模数转换器,以产生与输入信号成比例的数字。

二、利用噪声扰动提高ADC无杂散动态范围

对于高速ADC,若要最大程度地提高SFDR,存在两个基本限制:第一是前端放大器和采样保持电路产生的失真;第二是ADC编码器部分的实际传递函数的非线性所导致的失真。

提高SFDR的关键是尽可能降低以上两种非线性。

要显着降低ADC前端引起的固有失真,在ADC外部着力是徒劳的。然而,ADC编码器传递函数的微分非线性可以通过适当利用扰动(即外部噪声,与ADC的模拟输入信号相加)来降低。

在一定的条件下,扰动可以改善ADC的SFDR。例如,即使在理想ADC中,量化噪声与输入信号也有某种相关性,这会降低ADC的SFDR,特别是当输入信号恰好为采样频率的约数时。将宽带噪声与输入信号相加往往会使量化噪声随机化,从而降低其影响。然而,在大多数系统中,信号之上有足够的噪声,因此无需额外添加扰动噪声。ADC的折合到输入端噪声也可能足以产生同样的效果。将宽带均方根噪声电平提高约1 LSB以上会成比例地降低ADC SNR,且性能不会有进一步的提高。

还有其它一些方案,都使用更大数量的扰动噪声,使ADC的传递函数随机化。信号从ADC输入信号中减去后,以数字方式增加到ADC输出中,从而不会导致SNR性能显着下降。这种技术本身有一个缺点,即随着扰动信号的幅度增大,允许的输入信号摆幅会减小。之所以需要减小信号幅度,是为了防止过驱ADC.应当注意,这种方案不能显着改善ADC前端产生的失真,只能改善ADC编码器传递函数的非线性所引起的失真。

还有一种方法更容易实现,尤其是在宽带接收机中,即注入信号目标频带以外的一个窄带扰动信号。一般来说,信号成分不会位于接近DC的频率范围,因此该低频区常用于这种扰动信号。扰动信号可能还位于略低于fs/2的地方。相对于信号带宽,扰动信号仅占用很小的带宽(数百kHz带宽通常即足够),因此SNR性能不会像在宽带扰动下那样显着下降。

以上便是此次小编带来的ADC相关内容,通过本文,希望大家对ADC具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭