当前位置:首页 > 电源 > 数字电源
[导读]  从设计规范阶段开始,工程师就应该明确每个滤波器所需要的频率响应,振幅比频率的斜率,以及是低通还是高通滤波器,是带通还是陷波滤波。可能需要限制滤波器溢出现有的电源电压;这是特别重要的,例如系统要在像M

  从设计规范阶段开始,工程师就应该明确每个滤波器所需要的频率响应,振幅比频率的斜率,以及是低通还是高通滤波器,是带通还是陷波滤波。可能需要限制滤波器溢出现有的电源电压;这是特别重要的,例如系统要在像MP3播放器一样的便携式应用中使用低电压电池的情况。当电源电压,频率类型和响应决定后,下一步就是将响应曲线所需要的特征转换为标准响应类型。

  确定响应曲线

  Butterworth,Bessel,Chebyshev的最常见的传统响应曲线如表1.0所示。除此之外还存在许多其他的响应曲线,但是其中一些是基于这些基本曲线的,只不过阶数更高,例如在高端音频分频器中常见的2阶Linkwitz-Riley就是由两个一阶Butterworth滤波器组成的。

  


 

  Butterworth是最常见的滤波器类型,因为其具有相比其他任何滤波器来说,最精密的平顶通带。Butterworth属于二类滤波器,意味着波纹被限制在阻带内。

  Chebshev是一类滤波器,响应曲线比Butterworth更为陡峭,但是它在通带内会受到波纹的影响。

  Cauer频率响应可以是一类,也可以是二类,因为在通带和阻带中的波纹都可以独立调整。对于给定的波纹值,它在阻带和通带之间具有最快的增益跃迁。

  Bessel频率响应适合于需要线性相位响应的系统,并且在通带中具有最大的平坦群延时。因此,在波形保持非常重要的音频电路中很受欢迎。

  频率的斜率

  电路中电抗性元件的个数,不论是电感性还是电容性元件,决定了电路中的“阶”数。一个电阻加上一个电容就是第一阶,并且加入到电路中的每个电抗性组件都会相应增加一阶。当频率相同时,每一阶会让斜率变得更大,每八度增加6dB。

  滤波器的阶数越高,响应曲线越接近垂直,如图1.0所示。

  

 

  模拟或数字

  采用数字方案要取决于许多因素;数字方案通常会花费较长的开发时间,需要更多的资源,并且可能无法达到与模拟滤波器相同的性价比。使用数字滤波器的器件,比如FPGA或CPU,需要将模拟信号转换成数字信号以进行滤波,然后再重新转换成模拟信号。DSP解决方案能提供复杂处理的能力,但是这种额外的灵活性需要更多的开发工作和更高的花费。

  在做出决定以前,主要应该考虑的是设计中其他必要功能模块的复杂性。

  滤波器设计的传统方式

  拉普拉斯变换可以通过计算或从标准响应曲线公式中进行更为普遍的查找来实现。

  公式1.0是针对三阶Butterworth滤波器进行的变换,其中:s=o+i。w,(实数+复数部分)

  变换分子和分母可以进行分解因子计算,以找到公式的极点与零点。

  使用极点和零点的滤波稳定性

  极点是能够使分母为0(或H(s)=无穷大)的“s”的数值,“零点”是能够让分子为0的 “s” 的数值。为了使滤波器稳定,极点的数值必须大于零点的数值。由于公式1.0只有极点存在,表明该三阶Butterworth稳定,并且没有摆动。

  如果滤波器的时间相对振幅响应需要进行检验,则对公式可以进行反拉普拉斯变换,以使其回到时间域。没有必要在模拟 “s”平面和“z”平面之间进行转换,因为已经可以使用数字方案了。[!--empirenews.page--]

  Sallen-Key有源滤波器

  尽管许多不同的配置可以在数学关系的基础上用于设计最终的电路,但由于本文章的目的,我们选择了Sllen-Key二极滤波器,因为它在所有针对低通和高通过滤的二阶滤波器配置中是最受欢迎的。它们构造简单,并且对于组件容差有相对弹性。图2.0和2.1分别展示了低通和高通配置。

  

 

  

 

  通过调整组件的值,任何二阶低通响应都可以产生。

  针对模拟滤波的单芯片解决方案

  如果需要高阶滤波器,基于Sallen-Key的滤波器可能不是最好的方案。达到8阶的滤波器就有可能使用专用的开关电容型滤波器,比如美信(Maxim)的MAX293。将输入时钟频率转换为所需要的滚升/滚降频率使得这些都变得非常灵活,但是它们受到的干扰确实要高于连续时间滤波器。

  TI的UAF42和美信的MAX274滤波器的优势是将低通,高通和带通合并在一个单独的元件中。通过使用高度准确的内部微调电容,它们就不容易受频率变化的影响,而频率变化会导致各级间的不一致。

  希望能实时改变滤波器规格的工程师可能会考虑现场可编程模拟阵列(FGAA),例如来自于AnADIgm的产品。这些产品采用小型QFN封装,具有可完全配置的模拟更能模块。例如,AN121E04具有4个可配置I/O单元和两个专用的输出单元,因此可以并行处理多个模拟信号。

  

[!--empirenews.page--]

 

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

美国纽约州阿蒙克2022年10月20日 /美通社/ -- IBM(NYSE: IBM)发布 2022 年第三季度业绩报告。 IBM 董事长兼首席执行官 Arvind Kri...

关键字: IBM 软件 BSP 云平台

网关、机顶盒、HDMI设备和USB电视棒得到SL3000的支持 印度班加罗尔2022年10月20日 /美通社/ -- Tejas Networks (孟买证券交易所代码:5...

关键字: ATSC 芯片 AN ABS

10月3日,三星电子在美国加州硅谷举办“三星晶圆代工论坛&SAFE论坛”。论坛上三星芯片代工部门表示,将于2025年开始生产2nm制程工艺芯片,然后在2027年开始生产1.4nm工艺芯片。据了解,此前台积电也曾规划在20...

关键字: 三星 1.4nm 芯片

消息称台积电将于今年9月开始对3纳米芯片进行量产。这下,三星要坐不住了!虽然三星在6月30日称自己已经实现了3纳米的量产。

关键字: 华为 3nm 芯片

提到台积电,相信大家都不陌生,作为全球顶尖的晶圆代工机构。仅台积电、三星两家晶圆代工厂的市场份额,就占据了全球半导体市场的70%左右。

关键字: 3nm 芯片 三星

英国广播公司《科学焦点杂志》网站5月22日刊登了题为《什么是摩尔定律?如今是否仍然适用?》的文章,摘要如下:

关键字: 摩尔定律 半导体 芯片

据业内消息,近日高通公司的CEO Cristiano·Amon在风投会议上表示,大家在关注经济增长时也开始关心芯片,在这个数字化转型和数字经济成为重要部分的时代,芯片对于提高效率是必须的,芯片的重要性正在被普遍接受,未来...

关键字: 高通公司 芯片

作为全球豪华汽车巨头,宝马在未来的电动汽车上也开始加大投资,这一次他们是多方下注,英国牛津的工厂还是战略核心,日前又透露说在中国投资上百亿生产电动车,今晚宝马公司又宣布在美国投资17亿美元,约合人民币123亿元。

关键字: 宝马 芯片 供应商

周四美股交易时段,受到“台积电预期明年半导体行业可能衰退”的消息影响,包括英伟达、英特尔、阿斯麦等头部公司均以大跌开盘,但在随后两个小时内纷纷暴力拉涨,多家千亿美元市值的巨头较开盘低点向上涨幅竟能达到10%。

关键字: 台积电 半导体 芯片

在需求不振和出口受限等多重因素的影响下,全球半导体厂商正在经历行业低迷期。主要芯片厂商和设备供应商今年以来股价集体腰斩。

关键字: 芯片 厂商 半导体

数字电源

15504 篇文章

关注

发布文章

编辑精选

技术子站

关闭