当前位置:首页 > 电源 > 数字电源
[导读]a.OP增幅器构成的全波形整流电路patterning图1的全波形整流电路,经常因正端(plusside)与负端(minus)gain的未整合,导致波形不均衡,所以决定gain值的电阻使用误差为±1%的金属皮膜电阻。本电路可以使IC1b作差

a.OP增幅器构成的全波形整流电路patterning

图1的全波形整流电路,经常因正端(plusside)与负端(minus)gain的未整合,导致波形不均衡,所以决定gain值的电阻使用误差为±1%的金属皮膜电阻。本电路可以使IC1b作差动动作,因此能够减缓高频时波形不均衡现象。虽然OP增幅器采用LF412,不过可以根据设计需求,改用与OP增幅器脚架相容的LM358

 

图1利用OP差动增幅器作全波整流的电路

IC1的1、2号脚架至5、6号脚架路径(route)是本电路基板主要设计重点,如图2所示如果导线绕过IC的外侧,路径会变长所以采取IC下方布线设计,正、负电源的图案导线宽度完全相同,信号则沿着箭头方向流动,二极管(diode)等整流电路则整合在基板左侧,电源导线加粗的同时接地采取fullground设计,如此一来双面电路基板就可以满足以上所有的要求。

图2利用OP差动增幅器作全波整流的电路基板图案

b.光学耦合器的基本周边导线

接着介绍封装光学耦合器(photocoupler)的电路基板分离图案设计技巧。光学耦合器主要功能是将board或是设备之间绝缘,主要原因是为了保障各组件保证的绝缘耐压特性,因此电路基板出现所谓的分离图案设计。图3的电路12V的输入单元与5V的输出单元就是采用分离图案设计,它使用四个编号为的PS2801-4光学耦合器。

图3使用photocoupler的电压转换电路

如图4所示为确保1次端(发光侧)与2次端(收光侧)的沿面距离,所以设计上分成表层图案与内层图案,内层图案若是fullpattern时,与一般fullpattern一样需作除料设计。所谓沿面距离是线导体之间的指导,沿着绝缘物通行时最短距离而言,有关耐压与沿面距离,UL、VDE等各国的安全规范都有严谨的规定与说明。

(a)pattern的间隔过窄设计例(b)pattern的间隔适当设计例

 

图4photocoupler正下方的1次端与2次端图案必需确实分离

I/O点数很多而且使用复数个光学耦合器的场合,必需将散热问题一并列入考虑。图5是根据以上需求,兼具散热效果的pattern设计范例,由图可知1次端与2次端的接地共通时,利用fullpattern连接可以提高散热效果;内层有接地时可以在fullpattern设置数个via与内层接地连接。如上所述根据1次端与2次端的电流值与散热要求,最后才能决定电阻的定额与pattern宽度

 

图5兼具散热效果的pattern设计[!--empirenews.page--]

c.100V以上商用电源线的图案

图6是已经绝缘可输出脉冲的商用交流zerocrosspoint电路。TLP626LED两者未点灯时,光学耦合器的光学晶体管(phototransistor)成为OFF,输出正极性的脉冲。

 

图6商用交流zerocrosspoint检测电路

由于商用交流的输入线相当危险,因此设计电路基板图案时必需充分考虑绝缘与安全性。图7所示虽然R1单独一个电阻电气上动作完全相同,不过与商用交流的输入直接连接的图案变长,或是流入电阻的电压变高时,电阻的耐电压特性会出现问题,因此建议读者最好分成数个电阻。图8的输入电压变高时,R1电力损失会以电压的二次方增加,此时必需改佣可以封装更大阻抗的电路基板图案。

 

图7以R1取代图17的R1-1R1-2

 

图8加大图17的R1-1R1-2容许电力可支持大电压范围

设计图9的电路基板图案,必需考虑下列事项:

①采用fullpattern设计,组件尽量紧凑封装。

②R1等发热组件附近设置低高度R1,同时尽量远离C1。

③R1设置复数个可以封装1W,2W,3W电力阻抗的land。

图9电路基板图案最大缺点是封装2W,3W电阻时,会因为实际电阻封装情况,造成未使用的land太接近胴体部位;图10是设计变更后的电路基板图案,如此一来R1封装在任何位置,组件下方不会出现land

 

图9商用交流zerocrosspoint检测电路基板图案图10设计变更后的基板图案.可发挥24位分辨率的A-Dconverter周边电路基板图案

图11是由复数个24位A-Dconverter构成,具备电压测试精度与SN比最佳化,与直流甚至20kHz信号的多频道数据记录前置器(multichanneldatarecorderfrontend)电路图。本电路亦可应用在3频数据记录器,为达成目的因此将成为ADC的转换基准的参考(reference)电源REF3125IC(以下简称为REF)当作ADC与pair使用,虽然如此设计ADC频道之间的gain误差会增大,不过复数ADC使用共通同的REF,图案的设计自由度提高,而且容易获得理想的基板布线设计。

[!--empirenews.page--]

图11复数个24位A-Dconverter构成的多频数据记录器电路

图12是从信号源一直到电源的过程中产生的接地电位差统计一览、上述电路为模拟/数字混载电路,因此接地会有模拟/数字电流流动,如果处理错误的话数字电路的return电流,会混入模拟接地变成噪讯源。

 

图12接地电流的种类与接地电位差的统计一览

此外各电路的电流是由电源的正极提供,再折返至供给元的负极,因此设计上利用此特性,设置return电流合流点与分歧,点使通行路径明确分隔。初段的模拟电路(前置增幅器)根据本身的电位基准点接受信号电压,信号源与该电位基准点若与接地的同电位时,正确信号电压会传递至前置增幅器。

图12是表示电流的合流与分歧电位差。此外ADC包含模拟/数字两种电路两者的接地之间电位若有动态变化的话,模拟单元会出现耦合(coupling)造成SN比恶化现象,所以图13的ADC直接连接在与地电位上完全相同位置。图24是充分反映以上构想的数据记录器电路基板图案,如图所示宽幅的接地图案在ADC与OP增幅器正下方通行,它除了达成低接地阻抗化之外,还兼具对IC芯片的遮蔽(shield)效果,尤其是电路内层或是背面设有可以传输脉冲信号的图案时,通常都可以获得极佳低接地阻抗与遮蔽效果。

 

图13充分反映图12的构想的数据记录器电路基板图案

图14是基板背面图案,图中的补充图A又称为remotesensing手法。虽然OP增幅器的输出部设置利用电容负载防止波动的电阻,不过只要插入包含该电阻与VrefP电位的复归loop,就能够正确将参考电压传至VrefP。补充图B则称为Kelvin连接手法,由于OPA2346的第2与第3脚架之间会产生参考(reference)基准电压,因此直接在VrefP至VrefN之间铺设电压传输线,如此就可以防止return电流波动产生电压误差

 

图14可以提供A-Dconverter良好参考电压的电路基板

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LM324是一款四通道运算放大器,广泛应用于各种模拟电路中。了解其功能引脚图对于正确使用和配置LM324至关重要。本文将详细解析LM324的功能引脚图,帮助读者更好地理解其工作原理和应用。

关键字: LM324 运算放大器 模拟电路

在这篇文章中,小编将为大家带来电子电路的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 电子电路 模拟电路

在通信系统中,按照接地功能不同分为工作接地、保护接地和防雷接地。工作接地又可分为直流工作接地和交流工作接地。防雷接地也称为过电压保护接地。

关键字: 通信设备 通信系统 接地

在这篇文章中,小编将对模拟电路的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 模拟电路 IC 模拟集成电路

今天,小编将在这篇文章中为大家带来高功率LED的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: LED 高功率LED 基板

数字集成电路(Digital Integrated Circuits,DIC)是一种能够处理数字信号的电路。它由多个数字逻辑电路元件组成,包括逻辑门、寄存器、计数器、加法器、乘法器等。数字集成电路广泛应用于计算机、通信、...

关键字: 数字集成电路 模拟电路 仿真

2023年3月2日 – 贸泽电子 (Mouser Electronics) 宣布与Asahi Kasei Microdevices (AKM) 签订全球分销协议。该公司是业界知名的先进传感器和模拟/数字混合信号IC供应商...

关键字: 硅半导体 ASIC 模拟电路

基于深亚微米工艺的新型千兆级模拟电路需要的电源电压越来越低,在某些情况下要低于1 V。这些高频电路通常需要较大的电源电流,因此,热管理可能会变得困难。设计目标是将功耗降至电路性能所必需的水平。

关键字: 模拟电路 LDO 电源电流

FC-BGA基板新产品在CES 2023首次亮相 在FC-BGA新工厂举行设备引进仪式……下半年全面启动 去年首次量产成功……基于全球第一技术力和客户信任的成果...

关键字: 基板 LG 半导体 封装

做过数据采集或者模拟电路的同学很可能知道下面这个关于ADC信噪比的著名公式:

关键字: 数据采集 模拟电路 ADC信噪比
关闭
关闭