当前位置:首页 > 电源 > 数字电源
[导读]摘要:目前我们使用的白色LED的实质是半导体荧光灯,它的基本特性和普通荧光灯一致,它的性能指标远比我们的期望值要差许多,不可以将其神化,半导体荧光灯,应该走下神坛。LED和半导体荧光灯在概念上的混肴已经给我国的照明产业造成了巨大的损失,这种现象不能再继续下去了。真正白色LED还有漫长的路要走,切勿浮躁。

追求高效节能,绿色环保和显示性好的电光源是科技界持之以恒的目标。
从上个世纪60年代开始,LED以惊人的时代得到迅速发展,特别是进入21世纪以后,LED的发展取得了更加令人鼓舞的成就。LED在显示屏、信号灯、液晶背光源以及取代其他小功率光源上,和其他电光源比上体现出无可比拟的优越性。但是,在目前白颜色大功率LED的发展上,混肴了普通LED和白颜色LED之间的基本属性,错误的把普通LED的优点转移白颜色LED上,误认为白颜色LED的使用寿命、发光效率能够和普通LED一样,过高估计了它的光效,在电光源领域神化了其功能,似乎只要用了LED 就是高科技,LED 可以解决一起照明问题;使用LED的项目就能够得到政府的支持,不使用LED的项目就不能够得到政府的支持;忽略了白颜色LED是半导体荧光灯的基本实质。下面我们简单介绍目前白颜色LED(半导体荧光灯)的发光机理。

图1 白颜色LED(半导体荧光灯)的发光机理

  从图1可以看到白颜色LED(半导体荧光灯)是由蓝光PN结周围的荧光粉发出的白光,通常荧光灯是由灯管内的紫外线激发荧光粉发光的,在发光原理上它们完全一致,如图2所示,区别在于普通荧光灯的灯丝由蓝光PN结取代。图3(c)指示出它的工作原理。另外还有通过紫外线LED激发荧光粉产生白光的半导体荧光灯,如图3(b)所示。

图2 普通荧光灯的发光原理

  LED和目前我们使用的白炽灯、气体放电灯的发光原理迥然不同。LED的自发性发光是由于电子和空穴的复合而产生的,这种半导体P-N结的电致发光机理决定了它发出的是单色光,而不可能产生具有连续谱线的白光,用单只LED也不可能产生两种以上的高亮度单色光。如果需要LED产生白光,只可能先让LED发出蓝光,然后利用荧光粉间接产生宽带光谱,合成白光。
 将某种形式的能量转化为光能的过程是一种量子转换过程遵守能量守衡定律。发光过程中的量子效率、量子提取率以及辐射光子的能谱决定了该过程的光效。白光光源运转时所经历的量子转换过程愈多、能量的损失愈大,光效必将降低。

  LED发光时载流子复合过程的量子转换效率虽然很高。但是必需利用荧光粉进行第二次量子转换才能转化为白光LED,因而量子效率和量子提取率大为降低,使白光LED光效提高受到限制。

  各类荧光灯包括高频无极荧光灯虽都属低气压放电灯,高效率的利用汞的谐振辐射将电能转化为辐射能量,但是由于这种谐振谱线处在紫外区,必须利用荧光粉进行第二次量子转换才能变成可见光,而第二次量子转换效率只有46%、而荧光粉吸收又使量子提取率下降,所以连续二次的量子转换过程使荧光灯的光效限制在90~100 lm/W左右,按目前的结构和材料其极限很难超过120 lm/W。

  还有一点值得注意的是常规光源的发光中心处于灯的中央,光辐射在4π立体角中均匀分布,与照射空间一致,量子提取率近于100%。LED是一种平面固体光源,只有外向(2π立体角或更小角度)的光子能够出射,所以常规LED 的50%的内向辐射光子大部分消失在芯片内部发热,量子提取率很低;LED的输出窗为多层不同的固体介质,粒子密度很大,光子在其中传播时吸收系数较大,不同介质层交界面处的反射亦使其量子提取率降低。当前结构的LED的这些特点是无法改变的,因此光效的提高受到了限制。不要幻想白光LED的光效能提高到140lm/W以上,除非是单色黄光LED或另一种全新结构的LED,例如:如能开发一种三能级(红绿蓝)型LED,这种LED的n型半导体或p型半导体中有三个以上不同施主能级或受主能级存在,当载流子复合时直接产生适当比例的红、绿、蓝三色光子因而直接发射白光。省去荧光粉的第二次量子转换过程当可使LED光效得到较大提高。但是LED单侧发光的特点是无法改变的,限制光效大幅提高的这一因素只能设法降低,不能完全取消。

  降低白光LED光谱中的蓝光成分是十分必要的,虽然这将降低它的光效,过多的蓝光易造成视觉疲劳且伤及视见膜。在这一点得到改进以前很难大规模进入家庭与紧凑型荧光灯竞争。

  从任何一个角度分析目前这种结构的白光LED(半导体荧光灯)的最高光效决不可能超过140lm/W。据测试,当前市售白光LED(半导体荧光灯)的最大总光子转换效率约在15~25%之间,光效约为45~80 lm/W,稳定工作时实际光效常常都在60 lm/W以下。白光LED(半导体荧光灯)的光效已经达到160lm/W或200lm/W的报导是不可靠,或许他们的测试出了差错,至于400lm/W的预言对于白光LED(半导体荧光灯)是荒唐的、即使对中心发射波长为555的黄光LED也失之过高。

  未来真正的白光LED应该是将红、绿、蓝或者更多颜色LED芯片封装在一起,产生白颜色光的白光LED,它将省去荧光粉的二次发光的转换过程,光效提高15%以上,效率可以达到150-160Lm/W,同时减少了有害的蓝光;光衰和芯片发热问题得到改善,这种真正的白光LED目前还有许多技术瓶颈,解决这些技术难题还需要比较长的时间。图3(a)指示的是这种方法。

图3 产生白光的LED的方法


[!--empirenews.page--]
 

  由于半导体荧光灯的发光机理是荧光粉发光,所以它的发光效率和光衰等特性受到荧光粉的制约,其结果必定和荧光灯差不多。图4是半导体荧光灯和普通荧光灯光衰比较图表,可以看出半导体荧光灯和普通荧光灯没有太多区别。图5是不同颜色LED和半导体荧光灯光衰比较,从而可以看出半导体荧光灯已经不具有LED的许多优点了。

图4 半导体荧光灯和普通荧光灯光衰比较

图5 不同颜色LED和半导体荧光灯光衰比较

  普通荧光灯的灯丝由蓝光PN结取代以后的半导体荧光灯有许多普通荧光灯所没有的优点:

  1:如果散热问题解决的好,半导体荧光灯由于没有灯丝,要比普通荧光灯使用寿命长许多。

  2:可以频繁开关启动。

  3:可以做到小功率白光高效率照明。(普通电光源小功率时效率不高)

  结论:

  1:目前我们使用的白色LED的实质是半导体荧光灯,它的基本特性和普通荧光灯一致,它的性能指标远比我们的期望值要差许多,不可以将其神化,半导体荧光灯,应该走下神坛。

  2:LED和半导体荧光灯在概念上的混肴已经给我国的照明产业造成了巨大的损失,这种现象不能再继续下去了。

  3:真正白色LED还有漫长的路要走,切勿浮躁。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭