当前位置:首页 > 电源 > 数字电源
[导读]TI 公司的ECG解决方案是采用TMS320VC5505 定点DSP,它是基于TMS320C55x DSP CPU核的定点DSP,它的C55x? DSP架构可得到高性能和低功耗特性,CPU支持内部总线架构,包括一条可编程总线,一条321位数据总总线和两条16位数据读

TI 公司的ECG解决方案是采用TMS320VC5505 定点DSP,它是基于TMS320C55x DSP CPU核的定点DSP,它的C55x? DSP架构可得到高性能和低功耗特性,CPU支持内部总线架构,包括一条可编程总线,一条321位数据总总线和两条16位数据读总线,两条数据写总线和专门用于外设和DMA的其它总线. TMS320VC5505还包括4个DMA控制器,每个四路.时钟为60MHz或100MHz,指令周期为16.67ns或10ns.主要用于无线音频设备,回声消除耳机,手提媒体设备,视频,工业控制,指纹生物学和SDR. 本文介绍了TMS320VC5505的主要特性和方框图以及采用TMS320VC5505的ECG解决方案方框图, ECG前端板详细电路图和所用材料清单(BOM).

Basic functions of an ECG machine include ECG waveform display, either through LCD screen or printed paper media, and heart rhythm indication as well as simple user interface through buttons. More features, such as patient record storage through convenient media, wireless/wired transfer and 2D/3D display on large LCD screen with touch screen capabilities, are required in more and more ECG products. Multiple levels of diagnostic capabilities are also assisting doctors and people without specific ECG trainings to understand ECG patterns and their indication of a certain heart condition. After the ECG signal is captured and digitized, it will be sent for display and analysis, which involves further signal processing.

图1.TI ECG方框图

ECG Implementation on the TMS320VC5505 DSP Medical Development Kit (Rev. A)

The TMS320VC5505 is a member of TIs TMS320C5000? fixed-point Digital Signal Processor (DSP) product family and is designed for low-power applications.

The TMS320VC5505 fixed-point DSP is based on the TMS320C55x? DSP generation CPU processor core. The C55x? DSP architecture achieves high performance and low power through increased parallelism and total focus on power savings. The CPU supports an internal bus structure that is composed of one program bus, one 32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data reads and two 16-bit data writes in a single cycle. The TMS320VC5505 also includes four DMA controllers, each with 4 channels, providing data movements for 16-independent channel contexts without CPU intervention. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the CPU activity.

The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit (DU) of the C55x CPU.

The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids pipeline flushes on execution of conditional instructions.

The general-purpose input and output functions along with the 10-bit SAR ADC provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces. Serial media is supported through two MultiMedia Card/Secure Digital (MMC/SD) peripherals, four Inter-IC Sound (I2S Bus?) modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface.

The VC5505 peripheral set includes an external memory interface (EMIF) that provides glueless access to asynchronous memories like EPROM, NOR, NAND, and SRAM. Additional peripherals include: a high-speed Universal Serial Bus (USB2.0) device mode only, and a real-time clock (RTC). The DMA controller provides data movement for sixteen independent channel contexts without CPU intervention, providing DMA throughput of up to two 16-bit words per cycle. This device also includesthree general-purpose timers with one configurable as a watchdog timer, and a analog phase-locked loop (APLL) clock generator.

In addition, the VC5505 includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs.

TMS320VC5505主要特性:

High-Performance, Low-Power, TMS320C55x? Fixed-Point Digital Signal Processor

16.67-, 10-ns Instruction Cycle Time 60-, 100-MHz Clock Rate[!--empirenews.page--]

One/Two Instruction(s) Executed per Cycle

Dual Multipliers [Up to 200 Million Multiply-Accumulates per Second (MMACS)]

Two Arithmetic/Logic Units (ALUs)

Three Internal Data/Operand Read Buses and Two Internal Data/Operand Write Buses

Fully Software-Compatible With C55x Devices

Industrial Temperature Devices Available

320K Bytes Zero-Wait State On-Chip RAM, Composed of:

64K Bytes of Dual-Access RAM (DARAM), 8 Blocks of 4K x 16-Bit

256K Bytes of Single-Access RAM (SARAM), 32 Blocks of 4K x 16-Bit

128K Bytes of Zero Wait-State On-Chip ROM (4 Blocks of 16K x 16-Bit)

16-/8-Bit External Memory Interface (EMIF) with Glueless Interface to:

8-/16-Bit NAND Flash, 1- and 4-Bit ECC

8-/16-Bit NOR Flash

Asynchronous Static RAM (SRAM)

Direct Memory Access (DMA) Controller Four DMA With 4 Channels Each (16-Channels Total)

Three 32-Bit General-Purpose Timers

One Selectable as a Watchdog and/or GP

Two MultiMedia Card/Secure Digital (MMC/SD) Interfaces

Universal Asynchronous Receiver/Transmitter (UART)

Serial-Port Interface (SPI) With Four Chip-Selects

Master/Slave Inter-Integrated Circuit (I2C Bus?)

Four Inter-IC Sound (I2S Bus?) for Data Transport

Device USB Port With Integrated 2.0 High-Speed PHY that Supports: USB 2.0 Full- and High-Speed Device

LCD Bridge With Asynchronous Interface

Tightly-Coupled FFT Hardware Accelerator

10-Bit 4-Input Successive Approximation (SAR) ADC

Real-Time Clock (RTC) With Crystal Input, With Separate Clock Domain, Separate Power Supply

Four Core Isolated Power Supply Domains: Analog, RTC, CPU and Peripherals, and USB

Four I/O Isolated Power Supply Domains: RTC I/O, EMIF I/O, USB PHY, and DVDDIO

Low-Power S/W Programmable Phase-Locked Loop (PLL) Clock Generator

On-Chip ROM Bootloader (RBL) to Boot From NAND Flash, NOR Flash, SPI EEPROM, or I2C EEPROM

IEEE-1149.1 (JTAG?) Boundary-Scan-Compatible

Up to 26 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)

196-Terminal Pb-Free Plastic BGA (Ball Grid Array) (ZCH Suffix)

1.05-V Core (60 MHz), 1.8-V, 2.5-V, 2.8-V, or 3.3-V I/Os

1.3-V Core (100 MHz), 1.8-V, 2.5-V, 2.8-V, or 3.3-V I/Os

TMS320VC5505应用:

Wireless Audio Devices (e.g., Headsets, Microphones, Speakerphones, etc.)

Echo Cancellation Headphones

Portable Medical Devices

Voice Applications

Industrial Controls

Fingerprint Biometrics

Software Defined Radio

图2.TMS320VC5505功能方框图

A number of emerging medical applications such as electrocardiography (ECG), digital stethoscope, and pulse oximeters require DSP processing performance at very low power. The TMS320VC5505 digital signal processor (DSP) is ideally suited for such applications. The VC5505 is a member of TIs C5000? fixed-point DSP platform. To enable the development of a broad range of medical applications on the VC5505, Texas Instruments has developed an MDK based on the VC5505 DSP. A typical medical application includes:

An analog front end, including sensors to pick up signals of interest from the body

Signal processing algorithms for signal conditioning, performing measurements and running analytics on measurements to determine the health condition

User control and interaction, including graphical display of the signal processing results and connectivity to enable remote patient monitoring

The MDK is designed to support complete medical applications development. It includes the following elements:

Analog front-end boards (FE boards) specific to the key target medical applications of the VC5505 (ECG, digital stethoscope, pulse oximeter), highlighting the use of the TI analog components for medical applications

VC5505 DSP evaluation module (EVM) main board

Medical applications software including example demonstrations Several elements of the MDK pulse oximeter system are:

VC5505 EVM

Pulse oximeter front-end board

Finger probe sensor

The schematics for the ECG front-end board

图3. ECG前端板电路图(1)

图4. ECG前端板电路图(2): ECG电极:V1 V2 V3

[!--empirenews.page--]

图5. ECG前端板电路图(3):ECG电极:V4 V5 V6

图6. ECG前端板电路图(4):ADC部分

图7. ECG前端板电路图(5):ECG电极检测

图8. ECG前端板电路图(6):右腿驱动部分

图9. ECG前端板电路图(7):电源和接口部分

ECG前端板材料清单:

更多医疗电子信息请关注:21ic医疗电子频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭