当前位置:首页 > 电源 > 数字电源
[导读] 1,概述在电子和自动化技术的应用中,数字信号转换模拟控制信号输出是电子设计中常见的问题,然而许多单片机内部并没有集成数摸转换器(DAC)。当然市场上也有一些专用的D

1,概述

在电子和自动化技术的应用中,数字信号转换模拟控制信号输出是电子设计中常见的问题,然而许多单片机内部并没有集成数摸转换器(DAC)。当然市场上也有一些专用的D/A转换芯片,但这类芯片价格昂贵,并且需要多个处理器功能管脚来控制,这对一般的简单应用是不适合的。

所以在有些应用中,由单片机的PWM输出(或者通过定时器和软件一起来实现PWM输出),经过简单RC滤波电路实现DAC来得到模拟电压是一种比较好的选择。然后,这种方法的一个缺点就是电平转换时间过长,本文提出了一种新的方法来克服该问题。

2, RC滤波电路

图1是传统的RC滤波电路,PSoC通过GPIO口和RC滤波产生模拟电压

图1,RC滤波电路产生模拟电压

在这种方法中,PWM通过Px[y]输出,Vout即是需要的模拟电压。PWM的输出在电压VDD和0之间变换,PWM的占空比(DC)决定Vout的输出值。增加DC输出电压也会跟着增加(当DC=0%时,Vout=GND; 当DC=100%时,Vout=VDD)。

这种方法比较简单,但缺点是电平转换时间长。例如,当DC从一个值变到另一个值时,可能要几个ms才能使Vout从一个电压变换到最终的稳定电压,如图2所示。

图2,RC滤波电路的电平转换时间

较长的电平转换时间在有些应用中是不适用的,下面我将提供一个新的方法来减小该时间。当然,也可通过减小电容电阻(RC)值并提高PWM频率来缩短电平转换时间,但有些单片机的固有缺陷而没办法提高PWM频率时就没办法了。

3, 电压跟随器电路

本文介绍一种新的方法能把转换时间减小到几十us,该方法除了RC滤波外,还使用了电阻、三极管以及另外一个GPIO口,三极管设计为电压跟随器模式,如下图3所示:

图3,电压跟随器电路产生模拟电压

三极管T是模拟电压Vc到Vout的开关。在空闲状态下设置Pa[b]为“strong drive”模式,并置为高电平(逻辑1),这样,Vout = VDD, 下列步骤将使Vout从空闲状态变换到指定的电压状态。

1)使能PWM并设定为指定的占空比DC。在计算PWN占空比时要考虑到三极管be间的压降(Vbe)。Vc = Vout + Vbe,得出DC = (Vout + Vbe)/VDD.

2) 做足够长时间的延迟以使Vc稳定在指定的电压,注意在这延迟的时间内Vout保持高电平VDD。

3) 设置GPIO口Pa[b]的驱动模式为“High-Z analog”,这将导致三极管T工作状态并且Vout将立即变为指定的最终电压(只需要几十个微秒)。

下列步骤将使Vout从指定的电压变换到空闲状态(Vout = VDD)

1) 设置Pa[b]的驱动模式为“strong drive”并置该PIN为高电平,Vout 将立即变为VDD.

2) 如果需要,此时可停止Px[y]口的PWM以减小功耗。

电平转换如图4所示,当Vc在电压下降的非稳态过程中,Vout还保持高电平。

图4,电压跟随器电路的电平转换时间

4, 实验和测试结果

在Cypress的CY8C20x24系列芯片中,无PWM模块,所以若需要输出模拟电压就只能使用内部的TImer13模块产生PWM,然后使用外围电路产生模拟电压。下面以 CY8C20224 芯片为例来说明两种模拟电压产生方法的测试情况。

1)使用RC电路做测试

由于CY8C20224提供的Timer13其输入时钟为32KHz,所以由此产生的PWM频率比较低。为了减小模拟电压值的纹波,必须提高RC电路的电阻电容值。在实验电路中R=47K,C=0.1uF。下图5是用示波器抓到的波形。

图5,RC滤波电路的电平转换波形

从上图可以看出,当电压从空闲状态(VDD=3.3V)变换到稳定电压1.0V时,大约需要13~15ms.

这在有些应用中是不够的。

2)采用电压跟随器电路测试

若采用电压跟随器电路,电压从空闲状态(VDD=3.3V)变换到稳定电压1.0V时,需要的时间不超过50us, 如下图6所示:

图6,电压跟随器电路的电平转换波形

5, 结束语

本文基于对RC滤波电路的分析,提出了一种快速产生模拟电压的方法,并通过实验证明其可行性。目前该方案已在Cypress CY8C20224芯片上液晶电视按键控制板项目使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭