当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]嵌入式系统芯片的软硬件协同仿真环境设计

摘要:针对嵌入式系统芯片SoC开发验证阶段的需求,介绍了一种通用的SoC软硬件协同仿真平台。软件仿真由C/C++和汇编语言编写,硬件仿真基于VMM验证方法学所搭建,SoC设计代码由RTL代码编写而成。将SoC设计代码中的ARM由DSM模型替代,通过VCS编译器将软硬件协同起来进行信息交互,实现一种速度快、真实性高、调试方便的通用性仿真平台。
关键词:协同仿真;DSM模型;验证方法学;片上系统

1 概述
    随着微电子产业日新月异的发展,IC设计的规模越来越大,集成度越来越高,已经足以将一套完整的系统集成到一块小小的芯片中。在这种形势下,SoC技术应运而生。随着IP核复用技术的出现,SoC芯片的设计已经不再是很大的难题,SoC芯片的验证已逐渐取代芯片设计成为芯片开发阶段的瓶颈。现阶段SoC芯片设计的正确性要经过前仿真、后仿真以及FPGA验证来保证。前仿真包括单元验证、集成验证和系统验证,后仿真包括带反标时序SDF的网表仿真,其中系统验证和后仿真都需要关注SoC芯片的全局功能,这就涉及SoC的软件仿真和硬件仿真的协同问题。本文以DSM模型替代ARM核,以VMM验证方法学和VCS仿真器为基础,搭建一个可重用性高、调试和定位问题方便、仿真真实性高、软件和硬件能够很好配合的协同验证平台。


    软硬件协同仿真架构如图1所示,协同验证分软件验证环境和硬件验证环境两部分。软件代码通常由C/C++和汇编语言混合编写而成,然后由软件编译器转换成二进制格式,最后将该二进制文件加载到SoC芯片的存储器中去,芯片boot启动时由ARM核调用软件代码并执行;硬件环境基于VMM验证方法学进行搭建,下文中会有详细介绍。协同仿真就是通过事件和命令,使用一些机制,在这两个环境间进行控制。

2 DSM模型的使用
    SoC芯片的CPU一般选用ARM,协同验证平台中ARM可以用seamless CVE模型替代,或者直接选用ARM网表。采用seamless CVE模型进行仿真,虽然速度比较快,但需要替换设计中的Memory模型,且必须使用CVE自己的模型,这样与芯片真实情况有出入;采用ARM网表进行仿真,速度比较慢,调试也不方便,但是更接近实际情况。相比于这两者,本文采用的DSM(Design Simulation Model)模型由ARM公司提供,能完全模拟ARM的接口和时序行为,具有更高的真实性,而且DSM无需更换存储器模型和外挂仿真工具,使验证DUT与实际芯片完全一致,即不必为了满足仿真需求修改部分RTL代码。此外,DSM环境仿真过程中输出的LOG文件log.eis真实记录每个周期执行的CPU代码和操作。根据该文件能快速定位软件问题。CVE环境通过调用XRAY软件调试工具,虽然可以进行单步调试、没置断点等操作,但出现软件问题时定位没有DSM环境那么直观、方便。[!--empirenews.page--]
    DSM是ARM公司提供的设计仿真模型,该模型直接从ARM公司的RTL代码经过加密处理转化而来,具有同真实RTL代码完全一致的功能和特性。在时序仿真过程中,还能直接对该模型反标时序。在仿真过程中,将模型WRAPPER——也就是模型的最顶层——例化到RTL代码中,仿真器在仿真过程中触发WRAPPER,请求Model Manager动态调用模型库进行仿真。Model Manager响应请求动态调用模型库文件,达到功能仿真的目的。由此可以看出,Model Manager在仿真过程中充当中介角色,将模型和仿真器动态连接在一起。DSM模型的工作原理如图2所示。

[!--empirenews.page--]

3 软件仿真
    ARM汇编器工具ARMASM、ARM的C/C++编译工具ARMCC和ARMCPP,以及ARM的链接工具ARMLINK,利用ARM工具对软件代码进行编译链接生成的文件格式为ELF格式(Executable Link File),原始代码在文件中的位置通过SCATTER文件指定,ARM提供了fromelf工具,该工具将ELF格式的文件根据运行时域转化为二进制文件,以便在仿真起始阶段将代码放到指定的Memory中。在makefile中将ELF格式转化为BIN文件的具体实例如下:
    Fromelf-bin output./softWare.elf
    上述语句表示将software.elf文件转化为二进制文件放到当前目录。
    在软硬件协同仿真的初始阶段,需要将生成的二进制文件导入相应的存储器中,这通过Verilog提供的系统函数fread实现。下面是一个将二进制文件导入存储器的实例,先通过$fopen函数读出文件地址,然后通过$fread函数将指定地址的文件数据传给变量inst_fik_word,最后将变量inst_file_world中的值传给存储器中的相应地址单元。在DSM仿真中都需要一个这样的“桥梁”文件,将软件和逻辑链接起来。
   
    [!--empirenews.page--]
    软硬件协同仿真的软件结构如图3所示,系统BOOT起来后直接跳转到main()函数进行单进程任务,如果出现中断异常,则boot代码中根据中断向量表地址跳转到中断处理函数。中断处理函数中包含对各中断的处理,main()函数中调用各个模块的TC(Test Case)函数,TC调用底层的驱动代码。驱动代码的编写则基于各个模块的寄存器定义文件和全局变量。该软件结构清晰可控,便于各测试用例TC的并行提交和管理。



4 构建基于VMM的软硬件协同仿真平台
    在软硬件协同仿真环境中,完全可以采用基于VMM的验证架构,但软硬件协同仿真环境较一般的纯逻辑集成验证环境难度大,主要体现在软硬件协同仿真环境冈为仿真过程中有软件代码在执行,同时验证环境也在执行,因此如何将软件代码和硬件环境协调起来是关键。在仿真过程中,软件和验证环境之间需要建立一种通信机制,如可以通过中断通信,也可以通过某一特殊信号线通信。软硬件协同仿真环境中,某一项功能点的测试常常需要软硬件两条测试用例TC,软件TC需要驱动代码,而一般的集成测试用例不需要软件TC和驱动。典型的VMM的验证架构如图4所示。

[!--empirenews.page--]
    验证的总体架构是分层次的,层次化的验证环境具有很好的扩展性和重用性,各个层次完成自己特定的功能。Test层又叫TC层,主要完成数据激励的定义、环境的控制工作。Generator层定义的数据“模板”,产生各种数据激励。Function Layer层完成输入和输出数据激励的收集,进行自动比对。Command Layer层主要按接口时序收发数据,同时将一些底层方法(如数据读写等)进行封装。Signal Layer层主要是完成接口信号连接工作。不同的人关注不同层次,一般的验证人员只需要在Test层工作,编写测试向量。只有搭建环境的验证人员才需了解各个层次。验证架构的层次化降低了验证环境复杂度和环境维护成本,提升了验证效率。


    本文基本采用图4的验证环境架构的思路,并在其基础上进行修改,添加相应组件。VMM验证环境架构如图5所示,环境数据流从测试用例Test Case开始,经过数据包产生器Generator和数据处理器Transactor送给BFM处理,BFM把验证环境的抽象层次从信号级抽象到Transaction级,在实现上只做时序转换功能,利于重用。从发送方向看,BFM只负责将接收到的数据发送给DUT;从接收方向看,BFM只负责将接收到的数据发给Transactor,实现任何数据的解析。Monitor抓取接口上的信号,并分析各组控制信号之间的逻辑时序关系,检查其是否满足协议所规定的逻辑时序关系,同时把监测到的数据信号转化为数组送到RM解析。与BFM一样,Monitor只实现时序转换功能,不做数据解析。从Monitor上采样数据再送入RM,是基于重用的角度考虑。参考模型(RM)用于预测数据响应,Check组件将RM的输出数据与被观测响应进行比较。
    该验证环境架构还添加断言(Assertion)来提高观察和定位设计问题的能力。断言是检查DUT中信号行为是否正确的观察器,用来描述被预期的特定性质。本文采用的断言为SVA断言语言,可以应用到设计过程的各个阶段,还可以统计功能覆盖率。

5 基于DSM的软硬件协同仿真调试
    由于DSM模型在仿真过程中,会将ARM执行的每一步动作打印出来,生成一个log.eis文件,由该文件给出的信息定位问题非常方便,如图6所示。


    图中第1列表示程序执行到ARM的第几个时钟周期。第2列是ARM执行的指令类型。第3列的CCFAIL表示条件执行时是否执行,如果条件执行了,则不打印CCFAIL,反之则打印出CCFAIL。第4列是ARM执行的机器码。最后几列是详细的ARM执行的动作,从图中可以看出ARM执行哪一步指令,将哪些数据读写到哪些地址。对应的仿真波形图如图7所示。可以看出,log.eis完整无误地将ARM执行的动作打印了出来。

结语
    设计验证是SoC设计的关键技术之一,贯穿整个SoC设计过程。随着SoC技术的发展,软硬件协同验证的效率和正确性对整个SoC设计的影响也越来越大。相比传统的软硬件协同环境,本文介绍的环境速度快,更真实,调试也更加容易。该环境可继承性好,能够为各种SOC项目开发验证所用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在工业物联网设备部署中,Modbus通信故障是导致系统停机的首要原因之一。据统计,超过60%的现场问题源于通信配置错误或数据解析异常。本文从嵌入式系统开发视角,系统阐述Modbus通信调试的方法论,结合实际案例解析如何高...

关键字: 嵌入式系统 Modbus通信

在嵌入式系统开发中,看门狗(Watchdog Timer, WDT)是保障系统可靠性的核心组件,其初始化时机的选择直接影响系统抗干扰能力和稳定性。本文从硬件架构、软件流程、安全规范三个维度,系统分析看门狗初始化的最佳实践...

关键字: 单片机 看门狗 嵌入式系统

北京亦庄启动具身智能社会实验计划 北京2025年8月9日 /美通社/ -- 2025世界机器人大会正在北京经济技术开发区(简称北京经开区,也称北京亦庄)举行。在8月9日的2025世界机器人大会"产业发展&qu...

关键字: 智能机器人 数据采集 软硬件 零部件

人工智能(AI)和机器学习(ML)是使系统能够从数据中学习、进行推理并随着时间的推移提高性能的关键技术。这些技术通常用于大型数据中心和功能强大的GPU,但在微控制器(MCU)等资源受限的器件上部署这些技术的需求也在不断增...

关键字: 嵌入式系统 人工智能 机器学习

Zephyr开源项目由Linux基金会维护,是一个针对资源受限的嵌入式设备优化的小型、可缩放、多体系结构实时操作系统(RTOS)。近年来,Zephyr RTOS在嵌入式开发中的采用度逐步增加,支持的开发板和传感器不断增加...

关键字: 嵌入式系统 软件开发 实时操作系统 Zephyr项目

在资源受限的嵌入式系统中,代码执行效率和内存占用始终是开发者需要权衡的核心问题。内联函数(inline functions)和宏(macros)作为两种常见的代码展开技术,在性能、可维护性和安全性方面表现出显著差异。本文...

关键字: 内联函数 嵌入式系统

在嵌入式系统和服务器开发中,日志系统是故障排查和运行监控的核心组件。本文基于Linux环境实现一个轻量级C语言日志库,支持DEBUG/INFO/WARN/ERROR四级日志分级,并实现按大小滚动的文件轮转机制。该设计在某...

关键字: C语言 嵌入式系统

在嵌入式系统和底层驱动开发中,C语言因其高效性和可控性成为主流选择,但缺乏原生单元测试支持成为开发痛点。本文提出一种基于宏定义和测试用例管理的轻量级单元测试框架方案,通过自定义断言宏和测试注册机制,实现无需外部依赖的嵌入...

关键字: C语言 嵌入式系统 驱动开发

在嵌入式系统与驱动开发中,内存映射I/O(Memory-Mapped I/O, MMIO)是一种将硬件寄存器映射到处理器地址空间的技术,允许开发者通过指针直接读写寄存器,实现高效、低延迟的硬件控制。本文通过C语言实战案例...

关键字: 内存映射 I/O操作 嵌入式系统
关闭