当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于DSP/BIOS的多信号并行处理软件架构设计

摘要 利用DSP芯片设计出能够支持多类信号多路并行处理的软件,可减少外围专用算法芯片的使用,降低设计成本、缩小印制板尺寸、缩短开发周期。文中介绍了一种利用DSP/BIOS操作系统进行快速开发设计的软件架构,不仅满足此种需求,并且方便了算法的裁减扩充和程序跨平台移植,在实际应用中得到了广泛应用和验证。
关键词 DSP/BIOS;HWI;PRD;TSK;软件架构

    随着信息技术和芯片技术的发展,DSP技术在航空、通信、医疗和消费类电子设备中得到广泛应用。伴随主频不断提升及多核并行工作,DSP芯片的运算能力快速增强。运用DSP芯片快速设计多类信号多路并行处理的软件,变得更加重要。为满足需求,文中提出一种基于DSP/  BIOS的软件架构,可提高软件的可维护性和可重用性,方便算法的裁减添加及程序的跨平台移植,实现多类信号多路并行处理的软件快速开发设计。

1 DSP/BIOS简介
    DSP/BIOS是TI公司推出的实时操作系统,集成在CCS(Code Composer Studio)开发环境中。DSP/BIOS采用静态配置策略,通过去除运行代码能使目标程序存储空间最小化,优化内部数据结构,在程序执行前够通过确认对象所有权较早地检测出错误,可满足DSP运行时的调试和性能分析,应用DSP/BIOS可以快速编写高效程序,较大的简化DSP应用程序的开发和调试。DSP/BIOS是一组可重复调用的系统模块应用程序接口API集合,分为系统模块System、协助模块Instrumentation、调度模块Scheduling、同步模块Synchronization、通信模块Input/Out put和配置模块CSL。系统模块,主要完成芯片型号确认、字节序Endian Mode配置、主频配置、芯片Cashe空间划分及内存空间分配。协助模块Instrumentation,主要负责消息打印、事件日志及信息追踪工作。调度模块,为DSP/BIOS核心功能,可细化为定时管理CLK、周期中断管理PRD、硬中断管理HWI、软中断管理SWI、任务管理TSK和空闲任务管理IDL。CLK控制片内的32位实时逻辑时钟,负责PRD周期的设置。PRD管理周期对象,触发应用程序周期执行性,为一种特殊的SWI。HWI管理硬件中断,主要负责DSP与外设的数据交互,中断服务程序应尽量短小精焊。SWI是不可阻塞抢断式,SWI任务只能在程序编制时预先定义好。TSK是可阻塞抢断式的,支持任务的动态产生。IDL管理休眠函数,休眠函数在目标系统程序无更高优先权的函数运行时启动,是一种特殊的TSK。同步模块,负责各个调度模块之间信息的交换传递,保证调度模块之间的同步和互斥。通信模块,允许应用程序在目标系统和主机之间交流数据。配置模块,负责芯片底层硬件的配置。另外DSP/BIOS还带有插件,支持实时分析、程序跟踪和性能监视。

2 DSP软件架构


    软件架构采用分层设计思想,共分5层:驱动层、系统层、算法层、控制层和应用层。驱动层完成芯片硬件接口及外围芯片驱动。系统层运行DSP/BIOS操作系统,完成硬件中断、周期控制和任务调度功能。算法层提供各类业务需求的算法API。控制层负责软件的指令解析、内存管理、中断服务和交换控制。应用层为CPU调用控制DSP提供指令交互和数据交互接口。

3 子层设计
3.1 驱动层
    使用DSP/BIOS图形化的界面,调用芯片支持库模块CSL,快速设置DSP底层硬件接口,完成芯片的MCBSP驱动、EMIF驱动和EDMA驱动的开发。对于外围芯片的驱动,如A/D芯片驱动,首先硬件上完成DSP芯片与A/D芯片的接线,然后按照配置指令的帧格式完成对A/D芯片的配置。[!--empirenews.page--]
3.2 系统层
    系统层设计为软件架构设计的关键点,充分利用DSP/BIOS提供的调度模块和同步模块。将控制层中的指令解析、交换控制和交换表更新模块与PRD绑定,周期检查有无新指令,并根据指令解析更新交换表,调度周期由32位实时逻辑时钟控制。将控制层中的交换控制和数据交换模块与TSK绑定,根据从其他模块收到的信号量SEM或者邮箱信息MBX,进行数据格式转换,完成不同格式的数据在不同信道间的透明传输。将中断服务与HWI进行绑定,完成数据实时收发。运用同步模块Synchronization中的邮箱机制MBX与信号量SEM机制完成HWI、PRD和TSK之间的消息传递。运用操作系统的调度算法,完成多个任务之间的调度,控制数据收发及数据处理。
3.3 算法层
    把各类算法单独列为一层,汇聚多类信号算法,采用松散耦合和可重入设计方法,方便算法的移植、维护及多路并行工作设计,并根据应用需求,方便算法的裁减和扩充。各类算法严格独立,都以单独库和头文件的形式提供。算法层的结构如图2所示。


3.4 通信常用算法
    DTMF:双音多频信号,每个号码由两个音频信号相加得到,广泛用在电话拨号和来电显示中,其生成和检测算法。
    FSK:利用1 200 Hz和2 200 Hz的正弦信号,采用2FSK调制解调方法,广泛用于来电显示中,其生成和检测算法。
    TONE:三音生成和检测算法,包含信号音、忙音、回铃音生成和三音检测,广泛用于电话交换系统中。
    G.711:速率为64 khit·s-1的语音编解码标准,广泛用于电话交换系统中。
    CVSD:连续可变斜率编码的英文缩写,速率为16 khit·s-1的语音编解码标准,用于低速率通信系统中,其编解码算法。
3.5 控制层
    控制层设计为软件架构设计第二个关键点,在应用层与系统层、算法层之间起到桥梁作用。由指令解析、内存管理、中断服务和交换控制4个模块组成。指令解析由操作系统PRD调用,周期性的判断是否具有新的指令到来,如有新指令到来,首先把新的指令放入到指令FIFO存储器,然后清空指令空间,避免下次调用指令解析函数时做出误判断,最后指令解析模块会对指令FIFO中的内容进行解析,根据解析结果更新交换控制模块中的交换表。内存管理为每个业务通道分配了发送缓存区Tx Buffer和接收缓存区Rx Buffer,并为每个Tx Butter和Rx Buff er配备了管理指针,用于指示Buffer中的数据的存储位置及空闲位置,并由此计算出每个Buffer的数据个数及空闲空间大小,完成对异常操作如写操作过程中产生的Buffer溢出或读操作过程产生的Buffer空的处理。在产生硬件中断时,中断服务由BIOS系统HWI调用,完成实时数据收发。中断服务需要保证实时性,不作过多控制和计算,尽可能减少执行指令数目,以及使用短周期指令,必要情况下使用CCS提供的已经优化的Intrinsics函数进行程序的优化或运用汇编指令编写。HWI不可阻塞,在中断服务中,不可调用具有可能引起阻塞的函数。与系统中其他任务之间的信息交换可以通过协助模块中的邮箱机制MBX或信号灯机制SEM进行交互。交换控制模块实现不同通道数据之间的交换,并伴随不同数据格式相互转换。交换控制包含交换表管理和数据交换,具备多种的交换能力。交换表管理具有交换表条目删除和增加的功能。数据交换模块根据交换表完成源通道数据到目的通道数据格式转换,然后将转换后的数据放置到目的通道的发送缓存中,等待数据发送,具有多路并行工作能力。控制层内部模块之间的数据交互如图3所示。


3.6 应用层
    应用层设计采用内存共享机制,实现DSP与CPU的指令交互和数据交互。为确保每次读写数据的完整性和正确性,两块处理器间需要建立有效的通信机制,保证不会同时对同一地址进行操作。指令交互负责接收CPU指令并向CPU返回结果。指令解析模块周期性读取指令,并进行解析,控制DSP每个业务通道的操作,如果是DTMF检测、FSK检测或TONE检测指令,DSP将解析出的结果反馈给CPU。如果是DTMF产生、FSK产生或TONE产生指令,DSP将向指定业务通道发送号码对应的DTMF信号、FSK信号或拨号音、忙音、回铃音或催挂音等;如果是两信道语音格式转换指令,DSP将从源信道接收数据,完成转换格式后,发往目的通道。数据交互,DSP与CPU通过共享内存还可进行数据交互,数据的存储状态将由内存管理模块进行控制。

4 结束语
    文中介绍的软件架构,已在实际应用中得到验证,在TMS320VC5416可同时完成32路多种信号处理DTMF、FSK、TONE、CVSD、G.711任意配置,在TMS320C6418可同时完成128路多信号处理DTMF、FSK、TONE、CVSD、G.711任意配置,并可加入多路G.729处理。该软件架构能够保证不同算法的单独开发和重复利用,在跨平台移植时,根据硬件接口不同,仅需对驱动层进行重新配置,其余层的代码可直接移植,加速了多信号并行处理软件开发设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭