当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]摘要 提出了一种基于ARM7嵌入式系统的数据采集与无线传输模块的设计方案,实现高精度、快速、实时的数据采集与传输。介绍了基于LPC220芯片的数据采集系统,给出了由嵌入式L

摘要 提出了一种基于ARM7嵌入式系统的数据采集无线传输模块的设计方案,实现高精度、快速、实时的数据采集与传输。介绍了基于LPC220芯片的数据采集系统,给出了由嵌入式LPC2220微处理器和射频收发芯片nRF905组成的无线传输模块设计。当其工作在868 MHz频段时,数据传输速率可达1 Mbit·s-1,采用高增益天线,使得传输距离可达800 m以上,且表现出良好的稳定性。最终实现高精度、快速、实时的数据采集与传输。

关键词 嵌入式系统;LPC2220;nRF905;数据采集;无线传输

随着数据监测、无线通信和EDA技术等应用领域的不断扩展,人们对数据采集系统的采集精度、采集速度以及数据存储量都提出了更高的要求。针对当前数据采集系统的不足,提出了一种基于ARM7处理器LPC2220的嵌入式高速数据采集系统设计,以满足系统高速、实时,数据存储量大的需求。此外,由于模拟信号的抗干扰能力差而不利于传输,因此通常利用数字信号进行传输。利用无线通信方式,系统结构轻巧、维护方便。适用于防汛防旱等灾难预警中的数据检测,例如降雨量采集、水文站水位监测等。

1 数据采集模块设计

1.1 概述

所谓数据采集,就是通过传感器把一些物理量转换成模拟电信号,经过处理后再转换成计算机能识别的数字量,送入计算机。数据采集的关键问题是采集速度和精度。采集速度主要与采样频率和A/D转换速度有关,采集精度主要与A/D转换器的位数有关。高速数据采集系统的设计需要解决的是系统在速度、精度、数据存储方面的矛盾。文中介绍的数据采集系统采用飞利浦公司的LPC2220微处理器。数据采集系统(DAS)按照功能可分为:模拟信号调理电路、模数转换器、数据采集和存储、时钟电路、系统时序及逻辑控制电路。如图1所示。

1.2 系统时钟电路设计

时钟信号的稳定性决定了采样系统的性能。而相位噪声和抖动是反映时钟信号稳定性的两个主要指标。其中,相位噪声用来描述时钟信号的频谱纯度,相位抖动则直接影响时钟的过零点。时钟信号相位抖动对模数转换信噪比的影响,可通过式(1)计算得出

其中,fs为采样时钟频率;N为模数转换器的位数;△clk为时钟信号相位抖动量。因此,取样时钟的稳定性与信噪比的性能之间也存在着密切的关系。

1.3 系统抗干扰设计

高速数据采集系统存在较大的干扰问题,例如信号连线上的延迟、串扰、器件内部过度干扰和热噪声、电源干扰、地噪声等。不仅会影响着运算放大器与A/D转换器等模拟器件的精度,严重时还将影响系统的正常工作。因此在高速数据采集系统设计中,整个系统的采集精度主要取决于系统的抗干扰设计,尽可能减小或者消除干扰源。文中主要从以下几个方面进行考虑:

(1)电源设计方面。根据高速电路设计理论,A/D采集系统中的电源应当采用线性电源,以避免开关电源引入噪声。为降低电源阻抗,减小噪声对电源的干扰,通常采用电源层设计,尽可能增大电源面积。在设计每个芯片的供电电路时,在每个芯片的电源附近并联去耦电容和旁路电容。去耦电容为芯片提供局域化的直流;旁路电容可以消除高频辐射噪声和一直高频干扰。

(2)接地技术方面。高速数据采集系统的模拟地和数字地应严格分开,最后单点共地。共地点通常选择在ADC芯片管脚所需电流最大的位置,这样可以使大电流对地回流最近。以避免对模拟电路的干扰,提高系统的采集精度。模拟地和数字地可以通过磁珠连接,由于磁珠的高频阻抗大,而直流电阻为零,能够滤除高频电流减少地线上的高频噪声。

2 无线传输模块硬件设计

无线传输模块采用单片射频收发芯片nRF905,负责将工作在433/868/915 MHz国际通用的ISM频段,频段间的转换时间<650μs。GMSK /GFSK调制和解调,抗干扰能力强。采用DDS+PLL频率合成技术,频率稳定性好。数据速率可达100 kbit·s-1,170个频道,传输有效半径达500~1 000 m。

nRF905无线通信芯片采用抗干扰能力强的GMSK调制方式,工作频率稳定可靠,其显著特点是外围元件少、工作电压低,功耗小,接收待机状态仅为2.5μA,可满足低功耗设备的要求。灵敏度高,达到-100 dBm,最大发射功率达+10 dBm。该芯片在设计上充分考虑了用户编程和使用的方便,它可以直接连接单片机串口并可进行发送和接收数据,而无需对数据进行曼彻斯特编码。由于采用了低发射功率、高接收灵敏度的设计,使用无需申请许可证,在发射功率+10 dBm情况下,开阔地的使用距离可达1 000 m。[!--empirenews.page--]

2.1 nRF905芯片工作模式

nRF905有4种工作模式,即接收和发送两种Shock Burst TM模式,关机和空闲两种节能模式。nRF905的工作模式由TRX_CE,TX_EN和PWR_UP 3个引脚决定。如表1所示。

Shock Burst TM模式:与射频数据包有关的高速信号处理都在nRF905片内进行,数据在微控制器中低速处理,但在nRF905中高速发送,因此中间有较长时间的空闲,这很有利于节能。由于nRF905工作于ShockBurst TM模式,因此使用低速的微控制器也能得到较高的射频数据发射速率。在Shock Burst TM接收模式下,当一个包含正确地址和数据的数据包被接收到后,地址匹配(AM)和数据准备好(DR)两引脚通知微控制器。在Shock Burst TM发送模式,nRF905自动产生字头和CRC校验码,当发送过程完成后,数据准备好引脚通知微处理器数据发射完毕。由以上分析可知,nRF905的Shock Burst TM收发模式有利于节约存储器和微控制器资源,同时也减小了编写程序的时间。

2.2 LPC2220与无线收发模块的连接

nRF905无线收发器电路模块与LPC2220开发板连接的硬件框图如图2所示,LPC2220处理器可以通过SPI接口及相关指令访问nRF905的寄存器。LPC2220中具有两个完全独立的SPI控制器:SPI0和SPI1。此处采用SPI0,其可配置为SPI主机或从机,支持全双工数据通信,最大数据率为外设时钟的1/8。电路天线部分使用高增益天线,在理想状况下,传输距离可达800 m以上。

当ARM有数据要发送时,通过SPI接口,按时序把接收机的地址和要发送的压缩数据传输到nRF905无线收发芯片中,再通过天线发送出去,这样完成了对1帧压缩数据的传输。SPI接口的速率在通信协议和器件配置时确定。ARM置高nRF905的TRX_CE,TX_EN管脚,激发nRF905的Shock Burst TM发送模式。P0.13管脚与DR管脚相连,通知ARM数据己发送完,P0.7管脚与CSN管脚相连,由主机ARM激活,决定从机nRF905是否开始读取数据。

nRF905与LPC2220两个这样的模块连接即可组成一个无线数据收发系统,如图3所示。串口通信时,通信双方必须要求相同的波特率才不会丢帧;同时也必须要求一致的通信数据格式,这都是通过LPC2220芯片的UART通信接口模块进行设置的。

3 实验结果分析

基于nRF905的无线传输模块最终实现了低功耗远距离的数据传输。经实验分析表明:当传输模块工作在868 MHz频段时,数据传输速率可达1 000 kbit·s-1;若采用高增益天线,则可使传输距离达到800 m以上,且表现出良好的稳定性。

4 结束语

嵌入式系统以其本身体积小巧便携、实时性高、稳定性好等优点,成为多领域共同研究的热点。文中采用ARM7作为控制器,其结构小巧,与外设连接提供了稳定可靠的硬件架构、功耗小、性能稳定、维护方便;不仅降低了成本,并且有效实现了高精度、高速、实时的数据采集,提高了系统的可靠性和实时性。此外,设计的无/线收发模块,采用nR9905通过SPI接口同微拉制器进行数据传送,通过ShoekBurstTM收/发模式进行无线数据发送,收/发可靠,实现简单。当工作在868 MHz频段时,数据发送/接收速率为1 000 kbit·s-1,收/发距离可达十几m,表现出良好的稳定性,实现高速传输。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

北京亦庄启动具身智能社会实验计划 北京2025年8月9日 /美通社/ -- 2025世界机器人大会正在北京经济技术开发区(简称北京经开区,也称北京亦庄)举行。在8月9日的2025世界机器人大会"产业发展&qu...

关键字: 智能机器人 数据采集 软硬件 零部件

北京亦庄发布"具身智能机器人十条" 北京2025年8月9日 /美通社/ -- 8月9日,在2025世界机器人大会"产业发展"主论坛上,北京经济技术开发区发布具身智能社会实验计划,...

关键字: 智能机器人 数据采集 供应链 零部件

在电动汽车中,电池组的性能与安全性直接关系到车辆的运行状况和驾乘人员的生命安全。数据采集卡在此发挥着持续记录电池组电流、电压、温度等关键参数的作用。以特斯拉电动汽车为例,其电池管理系统中运用了高精度的数据采集卡,能够以毫...

关键字: 电池组 管理系统 数据采集

在多路遥测系统中,TLV2548 作为一款常用的 12 位串行模数转换器,因其具备多通道、高速、低功耗等特性,被广泛应用于各类数据采集场景。然而,在实际应用过程中,TLV2548 多路遥测常受到多种干扰问题的困扰,这些干...

关键字: TLV2548 遥测 数据采集

数字时代改变了解决问题的范式,将智能引入边缘可以应对全新的复杂挑战。数据采集(DAQ)系统成为了边缘智能的核心。在数据采集领域,准确度和可靠性至关重要。为确保达到高准确度和完整性,隔离式精密信号链的重要性不容忽视。

关键字: 信号链 边缘智能 数据采集

对于初次尝试评估惯性检测解决方案的人来说,现有的计算和I/O资源可能会限制数据速率和同步功能,进而难以在现场合适地评估传感器能力。常见的挑战包括如何以MEMS IMU所需的数据速率进行时间同步的数据采集,从而充分发挥其性...

关键字: MEMS 传感器 数据采集

根据国网四川省《关于开展并网电厂PMU装置布点建设和信息完善工作的通知》要求 ,DXG水电站完成了CSD-361同步相量测量装置(PMU)的安装 ,按冗余配置方式通过一、二平面接入省调电力系统实时动态监测系统(WAMS)...

关键字: 同步相量测量 PMU 电力系统动态监测 数据采集

在当今数字化时代,数据已成为推动各行业发展的核心要素之一。从工业生产监控到医疗健康监测,从环境科学研究到智能交通管理,数据采集(DAQ)系统作为获取原始数据的关键环节,其性能和稳定性直接影响着后续数据分析、决策制定的准确...

关键字: 数据采集 DAQ

当下,大数据已成为推动各行业创新发展的核心驱动力。从互联网电商的精准营销到医疗健康领域的疾病预测,从金融行业的风险评估到城市交通的智能调度,大数据的身影无处不在。然而,大数据的爆炸式增长也带来了前所未有的挑战,其中高效的...

关键字: 数据采集 数据存储
关闭