当前位置:首页 > 物联网 > 智能应用
[导读] 物联网(IoT)应用的设计者主要关注两点:管理电源,最大限度地延长电池寿命;确保可靠的操作,防止各种电磁干扰(EMI)。物联网革命将引领数十亿电池和线路供电连接设备的部设,其中包括许多无线设备。

 物联网(IoT)应用的设计者主要关注两点:管理电源,最大限度地延长电池寿命;确保可靠的操作,防止各种电磁干扰(EMI)。物联网革命将引领数十亿电池和线路供电连接设备的部设,其中包括许多无线设备。所有这些设备都在争夺同一频率频谱。这将产生越来越嘈杂的环境,其中电磁波从多个辐射源产生辐射。自从引入无线设备以来,电磁信号干扰已成为共享未许可频谱的一个问题,操作中的设备数量增加时,问题的重要性也随之增加。诸如烟雾探测器、有毒气体传感器和PIR传感器等具有无线能力的终端设备由于它们之间的相互作用,需要进行额外的辐射EMI测试,如图1所示。

图1:带有电磁波的无源红外(PIR)传感器和一氧化碳检测器

创建无线感测节点的竞争为EMI测试带来了一定程度的复杂性。系统设计人员需要仔细甄选部件来避免重新设计的昂贵成本,因为这可能在产品开发的最后阶段延迟上市时间。除在噪声条件下工作,电池供电的连接设备还需要在不更换电池的情况下,安全可靠地运行数年。物联网设备的电池寿命变化很大,从几小时到几年不等,具体取决于应用和其运行环境。这些IoT设备的设计人员必须选择极低电流消耗的组件,以延长工作寿命并提供EMI抗扰性。

TI的LPV811系列纳米功率放大器消耗低至320nA的静态电流,以最大限度延长电池寿命,并且内部免受EMI干扰。然而,这些设备并不包括在许多最近发布的运算放大器上所看到的全输入EMI滤波器。我们这样做是有原因的,因为添加输入EMI滤波器大大增加了输入电容,这可能导致具有大反馈电阻值和源阻抗的亚微安电路中的峰值。相反,我们在LPV801、LPV802、LPV811和LPV812的布局和内部设计中采用了内部(专有)预防措施,使其尽可能对抗EMI。

为了验证我们内置的EMI缓和技术的有效性,我们对比了LPV802和两款市场上流行的不具备内部EMI保护的其他品牌同类设备。在所有环境下,使用LPV802的电路表现出比使用同类设备电路更好的EMI抗扰性。我们根据IEC 61000-4-3(电磁兼容性(EMC)——辐射测试条件)测试了所有三款设备的EMI耐受性。我们在80MHz至6GHz频率下将被测设备(DUT)置于校准的射频(RF)范围,同时根据IEC 61000-4-3 EMC辐射规范监测DUT的故障。为了对比这三个设备,我们在相同的电路中同时将三个设备暴露于相同的EMC辐射中,并监测其输出偏差。此外,为了测量常见EMI滤波技术的有效性,我们测试了两组电路板。一组电路板增加了外部输入EMI电容器,另一组电路板未装设EMI电容器。

图2所示为在标准62mil、双层FR4电路板上构建的测试板,其两侧带有接地层,以测试EMI性能。四针连接器可快速更换电路板。插接传感器引脚可更容易地移除传感器。

图2:带传感器的测试板

图3所示为测试装置。有四个测试板测试EMI性能。三个测试板具有相同电路,其上安装有不同的运算放大器。另外一个测试板以接地参考配置构建,但未在测试中使用。我们将四个测试板中的每一个通过1m长的四个导体屏蔽电缆连接到中心电池盒(2个AA电池),电缆两端都有EMI扼流圈。我们通过15米长的UTP CAT-5电缆将电池盒连接到控制室,并使用适当的EMI扼流圈,以将输出电压供给记录系统。带有锥体的两个白盒为场传感器,用于在测试期间监控电场。

图3:IEC61000-4-3 EMC辐射测试的测试设置

图4所示为IEC 61000-4-3规定的测试结果之一。在30V / m辐射水平,两个同类设备在140MHz时开始减弱,而LPV802保持到100MHz。一般来说,使用LPV802的电路其EMI性能优于使用其他品牌同类设备的电路,在针对不同辐射水平下进行的所有规定测试都是这样,特别是在100-200MHz范围内进行的测试。所有设备大多不受上频率(> 400MHz)的影响。

频率(MHz)

图4:使用电容器进行30V / m测试的结果

添加外部EMI输入电容也有助于整体性能。我们建议在正常设计过程中将其添加。EMI保护不能完全消除EMI的影响,但它确实有助于降低影响。

添加外滤可进一步降低影响。即使使用受EMI保护的设备,我们仍建议进行外部滤波。

使用诸如消耗纳米安培静态电流及抗EMI的LPV801、LPV802、LPV811和LPV812的部件,可以帮助设计人员构建具有更长电池寿命并符合全球EMI规定的系统。这有助于降低维护成本,加快上市时间。也无需担心在产品开发最后阶段EMI出现故障而耗费巨资进行重新设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭