当前位置:首页 > 单片机 > 单片机
[导读]从业近十年!手把手教你单片机程序框架 第53讲开场白:当我们想把某种算法通过一个函数来实现的时候,如果不会指针,那么只有两种方法。第1种:用不带参数返回的空函数。这是最原始的做法,也是我当年刚毕业就开始做项

从业近十年!手把手教你单片机程序框架 第53讲

开场白:

当我们想把某种算法通过一个函数来实现的时候,如果不会指针,那么只有两种方法。

第1种:用不带参数返回的空函数。这是最原始的做法,也是我当年刚毕业就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。这种方法的缺点是阅读不直观,封装性不强,没有面对用户的输入输出接口。

第2种:用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,如果要用在返回多个输出结果的函数中,就无能为力了,这时候该怎么办?就必须用指针了,也就是我下面讲到的第3种方法。

这一节要教大家一个知识点:通过指针,让函数可以返回多个变量。

具体内容,请看源代码讲解。

(1)硬件平台:

基于朱兆祺51单片机学习板。

(2)实现功能:

通过电脑串口调试助手,往单片机发送EB 00 55 XX YY 指令,其中EB 00 55是数据头, XX是被除数,YY是除数。单片机收到指令后就会返回6个数据,最前面两个数据是第1种运算方式的商和余数,中间两个数据是第2种运算方式的商和余数,最后两个数据是第3种运算方式的商和余数。

比如电脑发送:EB 00 55 08 02

单片机就返回:04 00 04 00 04 00 (04是商,00是余数)

串口程序的接收部分请参考第39节。串口程序的发送部分请参考第42节。

波特率是:9600 。

(3)源代码讲解如下:

#include "REG52.H"

#define const_voice_short 40 //蜂鸣器短叫的持续时间

#define const_rc_size 10 //接收串口中断数据的缓冲区数组大小

#define const_receive_time 5 //如果超过这个时间没有串口数据过来,就认为一串数据已经全部接收完,这个时间根据实际情况来调整大小

void initial_myself(void);

void initial_peripheral(void);

void delay_long(unsigned int uiDelaylong);

void delay_short(unsigned int uiDelayShort);

void T0_time(void); //定时中断函数

void usart_receive(void); //串口接收中断函数

void usart_service(void); //串口服务程序,在main函数里

void eusart_send(unsigned char ucSendData);

void chu_fa_yun_suan_1(void);//第1种方法 求商和余数

unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求商

unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp); //第2种方法 求余数

void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp);//第3种方法 求商和余数

sbit beep_dr=P2^7; //蜂鸣器的驱动IO口

unsigned int uiSendCnt=0; //用来识别串口是否接收完一串数据的计时器

unsigned char ucSendLock=1; //串口服务程序的自锁变量,每次接收完一串数据只处理一次

unsigned int uiRcregTotal=0; //代表当前缓冲区已经接收了多少个数据

unsigned char ucRcregBuf[const_rc_size]; //接收串口中断数据的缓冲区数组

unsigned int uiRcMoveIndex=0; //用来解析数据协议的中间变量

unsigned int uiVoiceCnt=0; //蜂鸣器鸣叫的持续时间计数器

unsigned char ucBeiChuShu_1=0; //第1种方法中的被除数

unsigned char ucChuShu_1=1; //第1种方法中的除数

unsigned char ucShang_1=0; //第1种方法中的商

unsigned char ucYu_1=0; //第1种方法中的余数

unsigned char ucBeiChuShu_2=0; //第2种方法中的被除数

unsigned char ucChuShu_2=1; //第2种方法中的除数

unsigned char ucShang_2=0; //第2种方法中的商

unsigned char ucYu_2=0; //第2种方法中的余数

unsigned char ucBeiChuShu_3=0; //第3种方法中的被除数

unsigned char ucChuShu_3=1; //第3种方法中的除数

unsigned char ucShang_3=0; //第3种方法中的商

unsigned char ucYu_3=0; //第3种方法中的余数

void main()

{

initial_myself();

delay_long(100);

initial_peripheral();

while(1)

{

usart_service(); //串口服务程序

}

}

/* 注释一:

* 第1种方法,用不带参数返回的空函数,这是最原始的做法,也是我当年刚毕业

* 就开始做项目的时候经常用的方法。它完全依靠全局变量作为函数的输入和输出口。

* 我们要用到这个函数,就要把参与运算的变量直接赋给对应的输入全局变量,

* 调用一次函数之后,再找到对应的输出变量,这些输出变量就是我们要的结果。

* 在本函数中,被除数ucBeiChuShu_1和除数ucChuShu_1就是输入全局变量,

* 商ucShang_1和余数ucYu_1就是输出全局变量。这种方法的缺点是阅读不直观,

* 封装性不强,没有面对用户的输入输出接口,

*/

void chu_fa_yun_suan_1(void)//第1种方法 求商和余数

{

if(ucChuShu_1==0) //如果除数为0,则商和余数都为0

{

ucShang_1=0;

ucYu_1=0;

}

else

{

ucShang_1=ucBeiChuShu_1/ucChuShu_1; //求商

ucYu_1=ucBeiChuShu_1%ucChuShu_1; //求余数

}

}

/* 注释二:

* 第2种方法,用return返回参数和带输入形参的函数,这种方法已经具备了完整的输入和输出性能,

* 比第1种方法直观多了。但是这种方法有它的局限性,因为return只能返回一个变量,

* 如果要用在返回多个输出结果的函数中,就无能为力了。比如本程序,就不能同时输出

* 商和余数,只能分两个函数来做。如果要在一个函数中同时输出商和余数,该怎么办?

* 这个时候就必须用指针了,也就是我下面讲到的第3种方法。

*/

unsigned char get_shang_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求商

{

unsigned char ucShangTemp;

if(ucChuShuTemp==0) //如果除数为0,则商为0

{

ucShangTemp=0;

}

else

{

ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp; //求商

}

return ucShangTemp; //返回运算后的结果 商

}

unsigned char get_yu_2(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp) //第2种方法 求余数

{

unsigned char ucYuTemp;

if(ucChuShuTemp==0) //如果除数为0,则余数为0

{

ucYuTemp=0;

}

else

{

ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp; //求余数

}

return ucYuTemp; //返回运算后的结果 余数

}

/* 注释三:

* 第3种方法,用带指针的函数,就可以顺心所欲,不受return的局限,想输出多少个

* 运算结果都可以,赞一个!在本函数中,ucBeiChuShuTemp和ucChuShuTemp是输入变量,

* 它们不是指针,所以不具备输出接口属性。*p_ucShangTemp和*p_ucYuTemp是输出变量,

* 因为它们是指针,所以具备输出接口属性。

*/

void chu_fa_yun_suan_3(unsigned char ucBeiChuShuTemp,unsigned char ucChuShuTemp,unsigned char *p_ucShangTemp,unsigned char *p_ucYuTemp)//第3种方法 求商和余数

{

if(ucChuShuTemp==0) //如果除数为0,则商和余数都为0

{

*p_ucShangTemp=0;

*p_ucYuTemp=0;

}

else

{

*p_ucShangTemp=ucBeiChuShuTemp/ucChuShuTemp; //求商

*p_ucYuTemp=ucBeiChuShuTemp%ucChuShuTemp; //求余数

}

}

void usart_service(void) //串口服务程序,在main函数里

{

if(uiSendCnt>=const_receive_time&&ucSendLock==1) //说明超过了一定的时间内,再也没有新数据从串口来

{

ucSendLock=0; //处理一次就锁起来,不用每次都进来,除非有新接收的数据

//下面的代码进入数据协议解析和数据处理的阶段

uiRcMoveIndex=0; //由于是判断数据头,所以下标移动变量从数组的0开始向最尾端移动

while(uiRcregTotal>=5&&uiRcMoveIndex<=(uiRcregTotal-5))

{

if(ucRcregBuf[uiRcMoveIndex+0]==0xeb&&ucRcregBuf[uiRcMoveIndex+1]==0x00&&ucRcregBuf[uiRcMoveIndex+2]==0x55) //数据头eb 00 55的判断

{

//第1种运算方法,依靠全局变量

ucBeiChuShu_1=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_1=ucRcregBuf[uiRcMoveIndex+4]; //除数

chu_fa_yun_suan_1(); //调用一次空函数就出结果了,结果保存在ucShang_1和ucYu_1全局变量中

eusart_send(ucShang_1); //把运算结果返回给上位机观察

eusart_send(ucYu_1);//把运算结果返回给上位机观察

//第2种运算方法,依靠两个带return语句的返回函数

ucBeiChuShu_2=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_2=ucRcregBuf[uiRcMoveIndex+4]; //除数

ucShang_2=get_shang_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求商

ucYu_2=get_yu_2(ucBeiChuShu_2,ucChuShu_2); //第2种方法 求余数

eusart_send(ucShang_2); //把运算结果返回给上位机观察

eusart_send(ucYu_2);//把运算结果返回给上位机观察

//第3种运算方法,依靠指针

ucBeiChuShu_3=ucRcregBuf[uiRcMoveIndex+3]; //被除数

ucChuShu_3=ucRcregBuf[uiRcMoveIndex+4]; //除数

/* 注释四:

* 注意,由于商和余数是指针形参,我们代入的变量必须带地址符号& 。比如&ucShang_3和&ucYu_3。

* 因为我们是把变量的地址传递进去的。

*/

chu_fa_yun_suan_3(ucBeiChuShu_3,ucChuShu_3,&ucShang_3,&ucYu_3);//第3种方法 求商和余数

eusart_send(ucShang_3); //把运算结果返回给上位机观察

eusart_send(ucYu_3);//把运算结果返回给上位机观察

break; //退出循环

}

uiRcMoveIndex++; //因为是判断数据头,游标向着数组最尾端的方向移动

}

uiRcregTotal=0; //清空缓冲的下标,方便下次重新从0下标开始接受新数据

}

}

void eusart_send(unsigned char ucSendData) //往上位机发送一个字节的函数

{

ES = 0; //关串口中断

TI = 0; //清零串口发送完成中断请求标志

SBUF =ucSendData; //发送一个字节

delay_short(400); //每个字节之间的延时,这里非常关键,也是最容易出错的地方。延时的大小请根据实际项目来调整

TI = 0; //清零串口发送完成中断请求标志

ES = 1; //允许串口中断

}

void T0_time(void) interrupt 1 //定时中断

{

TF0=0; //清除中断标志

TR0=0; //关中断

if(uiSendCnt

{

uiSendCnt++; //表面上这个数据不断累加,但是在串口中断里,每接收一个字节它都会被清零,除非这个中间没有串口数据过来

ucSendLock=1; //开自锁标志

}

if(uiVoiceCnt!=0)

{

uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫

beep_dr=0; //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。

}

else

{

; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。

beep_dr=1; //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。

}

TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

TR0=1; //开中断

}

void usart_receive(void) interrupt 4 //串口接收数据中断

{

if(RI==1)

{

RI = 0;

++uiRcregTotal;

if(uiRcregTotal>const_rc_size) //超过缓冲区

{

uiRcregTotal=const_rc_size;

}

ucRcregBuf[uiRcregTotal-1]=SBUF; //将串口接收到的数据缓存到接收缓冲区里

uiSendCnt=0; //及时喂狗,虽然main函数那边不断在累加,但是只要串口的数据还没发送完毕,那么它永远也长不大,因为每个中断都被清零。

}

else //发送中断,及时把发送中断标志位清零

{

TI = 0;

}

}

void delay_long(unsigned int uiDelayLong)

{

unsigned int i;

unsigned int j;

for(i=0;i

{

for(j=0;j<500;j++) //内嵌循环的空指令数量

{

; //一个分号相当于执行一条空语句

}

}

}

void delay_short(unsigned int uiDelayShort)

{

unsigned int i;

for(i=0;i

{

; //一个分号相当于执行一条空语句

}

}

void initial_myself(void) //第一区 初始化单片机

{

beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

//配置定时器

TMOD=0x01; //设置定时器0为工作方式1

TH0=0xfe; //重装初始值(65535-500)=65035=0xfe0b

TL0=0x0b;

//配置串口

SCON=0x50;

TMOD=0X21;

TH1=TL1=-(11059200L/12/32/9600); //这段配置代码具体是什么意思,我也不太清楚,反正是跟串口波特率有关。

TR1=1;

}

void initial_peripheral(void) //第二区 初始化外围

{

EA=1; //开总中断

ES=1; //允许串口中断

ET0=1; //允许定时中断

TR0=1; //启动定时中断

}

总结陈词:

这节讲了指针的第一大好处,它的第二大好处是什么?欲知详情,请听下回分解-----指针的第二大好处,指针作为数组在函数内部的化身。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备
关闭
关闭