当前位置:首页 > 模拟 > 模拟
[导读]日立制作所宣布,开发出了有关中高耐压(35~300V左右)晶体管的两项技术。其一是在一枚芯片上集成源漏极耐压各不相同的多个晶体管的技术,另一个是可将栅源极耐压提高至300V的技术。 图1:可将耐压各不相同的

日立制作所宣布,开发出了有关中高耐压(35~300V左右)晶体管的两项技术。其一是在一枚芯片集成源漏极耐压各不相同的多个晶体管的技术,另一个是可将栅源极耐压提高至300V的技术。


图1:可将耐压各不相同的晶体管集成在一枚芯片上的优点
日立制作的幻灯片。(点击放大)

图2:耐压的调整技术
日立制作的幻灯片。(点击放大)

两项技术都已有预定采用的项目,预定2011年内开始供货产品。另外,日立还在5月23日起于美国加利福尼亚州圣地亚哥(San Diego)举行的功率半导体相关国际会议“23rd International Symposium on Power Semiconductor Devices and IC's(ISPSD 2011)”上发布了这两项技术。

“将源漏极耐压各不相同的多个晶体管集成在一枚芯片上”的技术论文题目为“High Performance Pch-LDMOS Transistors in Wide Range Voltage from 35V to 200V SOI LDMOS Platform Technology”(Paper ID 1009),“将栅源极耐压提高至300V”的技术论文题目为“300 V Field-MOS FETs for HV- Switching IC”(Paper ID 1027),两篇论文均发表在“Smart Power Technology 2 Session”上。


图3:试制的晶体管的特性
日立制作的幻灯片。(点击放大)

图4:提高栅源极间耐压的优点
日立制作的幻灯片。(点击放大)


改变LDMOS的漂移长度

关于“将源漏极耐压各不相同的多个晶体管集成在一枚芯片上的技术”的开发背景,日立的上野聪(信息通信系统公司微器件业务部设计本部混合信号LSI设计部担当部长)表示,“继数字和弱电的模拟之后,希望中高耐压晶体管也实现高集成化的需求不断高涨。该技术满足了这种要求”。

上野表示,计划将该技术用于超声波诊断装置的IC。还希望用于汽车的IC等。部件价格方面,“离散晶体管价格非常便宜,集成的IC也与其基本相同。不过,由于板卡面积可缩小至1/10以下,因此能大幅削减总成本和产品尺寸”(上野)(图1)。

不同的耐压是通过改变晶体管长度方向的布局(即漂移长度)实现的(图2)。利用同一种半导体工艺即可制作出混载了不同耐压晶体管的芯片。p通道LDMOS和n通道LDMOS二者均已确认晶体管能够在35~200V耐压下工作(图3)。由于只需改变漂移长度即可,“开发方面具有可在EDA工具上轻松进行设计和验证的优点”(信息通信系统公司微器件业务部设计本部混合信号LSI设计部主任技师大岛隆文)。


图5:提高耐压的技术
日立制作的幻灯片。(点击放大)

图6:试制的晶体管的特性
日立制作的幻灯片。(点击放大)

将LOCOS用于栅极氧化膜

关于“将栅源极耐压提高至300V的技术”,上野介绍说,包括该公司在内,已有多家半导体厂商向市场供货栅源极耐压最大为200V的产品。需要输入300V等更高电压时,一般利用降压电路将其降至晶体管的200V耐压的方法。不过,存在的问题是降压电路的耗电量等较高。

此次,日立应板卡测试仪厂商希望确保200V以上栅源极耐压的要求进行了开发。关于除此之外的用途,上野称有望用于医疗器械领域。“医疗器械领域对栅源极耐压为200V的晶体管需求较大。如果能提供300V的产品,市场可进一步扩大”(上野)。利用此次开发的技术,能够降低耗电量,制造漏电流较低的IC开关(图4)。

将耐压由200V提高至300V的技术有多项(图5)。包括(1)将迄今隔离使用的LOCOS(Local Oxidation Of Silicon)用于栅极氧化膜;(2)利用电场模拟器,优化扩展漏极层(Extended Drain Layer)的长度等;(3)使布线图案实现最优化等。“电场模拟器以前就一直在市售品中使用。此次通过改善建模和利用流程,可以再现接近实际的现象”(大岛)。另外,稳定LOCOS比较困难,其他公司还没有实现300V耐压。

日立通过在栅源极之间加上电压,测量了采用此次技术的晶体管特性。确认到优化设计后的晶体管能在栅源极之间的电压为0V~300V的范围内作为晶体管正常工作(图6)。

另外,此次发布的两项技术目前尚不能组合使用。也就是说,尚不能在一枚芯片集成源漏极耐压不同的多个晶体管,并使栅源极耐压实现300V。“从技术上来说并不太难。如果有需求的话,会进一步开发”(大岛)。(记者:小岛 郁太郎)


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭