[导读]【导读】电容性触控市场需要高整合度解决方案
随著iPhone、iPod采用多点触控技术,让手机的使用界面出现了革命性的设计冲击。至于实现这种崭新界面控制的背后功臣,正是投射电容式触控技术,为了探讨此一新兴技术
【导读】电容性触控市场需要高整合度解决方案
随著iPhone、iPod采用多点触控技术,让手机的使用界面出现了革命性的设计冲击。至于实现这种崭新界面控制的背后功臣,正是投射电容式触控技术,为了探讨此一新兴技术的发展趋势,在2009 Computex期间由Digitimes所主办的「行动技术与设计论坛」中,特邀请微控制器设计和制造大厂Atmel触控产品营销主任George East担任讲师,分享最新的市场及技术信息。
George在论坛中首先指出,在过去,为了进行输入控制,手机在机构设计上往往需要让出许多空间给机械性的按键,机壳的厚度也无法做薄。然而,采用电容式触控技术能够实现手指触控控制的输入方式,而且可以让屏幕变大、机壳变薄,进而让设计感及使用性更佳。这种直觉式的输入界面已成为难抵挡的潮流,未来在笔电及计算机屏幕、汽车多媒体及导航设备、家电及消费性电子产品中,都可望采用多点触控的新界面。
目前市场上存在多种触控技术,如电阻式、光学式、音波式、影像感测式等,但对于小尺寸或中小尺寸面板的消费性产品来说,相较于投射电容式都存在一些限制,例如功耗、准确性、成本等。若要达成真实的多点触控应用,投射电容式更是首选的技术,因此,George指出,在未来几年中,此技术可望普遍的被市场所采用。
目前市场上采用的第一代投射电容式技术为自电容(self capacitance)的触控技术,它只能提供二点触控,而且无法做到更多样的触控应用功能。随著多点触控的应用被市场所接受,用户对触控功能的期待不断提升,George认为,未来自电容性技术将会被矩阵式的触控技术所取代。不过,由于矩阵式触控技术在感测布线上相当困难,多数厂商仍无法提供成熟的技术。
针对前瞻性的矩阵式技术触控技术,Atmel发展出整合性的电容性触控屏幕技术maXTouch。George指出,maXTouch在电容触控的硬件引擎部分,采用独特的电荷转移QMatrix量测技术,可以提供非常理想的触控感测资料;同时整合了高效能的微控制器后处理技术,能够进一步提供准确的座标资料,以及高阶的功能特性;不仅如此,maXTouch技术具有弹性及延展性,例如更大的面板需要更多的侦测点和更聪明的处理能力,才能维持良好的表现,maxTouch可满足这样的需求。
此外,maxTouch还可识别和报告用户的手势如放大、旋转、拨控和点击,而其片上形状识别(shape recognition)能力还可导出其它更复杂的功能。藉著独特的耳触、脸触、掌触排除算法,更可检测和拒绝不经意的触控动作。
maXTouch还能够非常快速地将触控位置报告给主机,这意味著不会影响用户使用先进功能如手写识别的速度。maXTouch技术还可报告「触点的尺寸大小」和「线条的宽度」,可望成为第一款能够识别手写笔和指甲二种触控输入媒介的电容性触控技术解决方案。
Atmel首款采用maXTouch技术的单芯片产品,将采用超薄5x5mm BGA封装,可让客户建构出极薄的高性能触控屏幕产品。高整合度maXTouch解决方案仅需3个旁路电容器即可构成完整的感测解决方案,与通常需要25至40个外部组件的现有解决方案相比,明显地节省下许多电路板空间。
maXTouch技术直接以触控屏幕市场的核心为焦点,适用于那些为广泛的终端产品市场包括手机、小笔电、打印机、GPS、可携式媒体播放器、数码相机和POS终端等构建触控屏幕解决方案的客户。
而从手机开始,更便利的触控界面也将会延伸到Netbook、Notebook、PC显示器、打印机、GPS、可携式媒体播放器、数码相机和POS终端等各个市场领域。在此一市场态势下,电容性触控面板解决方案会是电子产业成长最快的领域之一。
不过,George也指出,未来在应用上会要求具备更佳的可用性,例如可用手指、被动式触控笔、指甲等来触控控制;此外,也需要极快的反应速度以及优越的线性度等表现。当然,在成本上要能更低,而软件界面要更通用,建置上则要更容易。更重要的是,未来需要的是高度整合的解决方案,才能让产品快速的上市,并提供可靠好用的操作功能。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
本文针对具有快速瞬态变化和噪声敏感特性的负电压轨应用,提出了一种反相降压-升压解决方案。其中采用了一款单芯片降压转换器,在反相降压-升压(IBB)拓扑结构中融入了Silent Switcher® 3(SS3)技术。此解决...
关键字:
降压转换器
电容
电感
电容,作为电路设计中不可或缺的器件,以其独特的功能和广泛的用途,在电子领域扮演着举足轻重的角色。它不仅是一种无源元件,更在多个方面发挥着关键作用,如旁路、去耦、滤波以及储能等。
关键字:
电容
本文中,小编将对平行板电容传感器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。
关键字:
传感器
电容
电容传感器
集成电路作为将多个电子元件集成在一起的芯片器件,虽然功能强大但较为脆弱。高温环境可能导致集成电路参数漂移、耐久性下降和内部缺陷暴露等不良影响。
关键字:
电容
电阻
电容式触摸感应技术是一种广泛应用于现代触摸屏设备中的技术,如智能手机、平板电脑、电脑触摸板等。其原理基于电容的变化来检测和感应触摸操作。以下是对电容式触摸感应技术原理的详细阐述,旨在以清晰、结构化的方式呈现相关信息。
关键字:
电容
传感器
环境应力筛选试验(ESS试验)是考核产品整机质量的常用手段。在ESS试验中,随机振动的应力旨在考核产品在结构、装配、应力等方面的缺陷。体积较大的电容,在焊接后,如果没有施加单独的处理措施,在振动试验时容易发生引脚断裂的问...
关键字:
电容
元器件
在电子电路中,电容器是一种重要的元件,其功能是储存和释放电能。在众多类型的电容器中,固态电容和普通电容是两种常见的选择。虽然它们在功能上有很多相似之处,但它们的构造、性能和应用领域却存在显著差异。
关键字:
电容器
电容
电容作为电子设备中不可或缺的元件,其性能的好坏直接影响到整个设备的运行稳定性。因此,对于电子爱好者而言,掌握电容测量好坏的方法至关重要。
关键字:
电容
元器件
在下述的内容中,小编将会对稳压器的相关消息予以报道,如果稳压器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
关键字:
稳压器
整流桥
电容
钽电容,以其独特的构造和性能,在电子领域占据了一席之地。它们以钽金属为阳极,钝五氧化二钽为介质,构成了电解电容的一种。作为极化电容,钽电容展现出了卓越的频率响应和稳定性,且随着使用时间的增长,其性能变化并不显著。
关键字:
钽电容
电容
电容是电路元件中的一种基本无源器件,其主要功能是储存电能并在电路中起着滤波、耦合、谐振、储能等多种作用。
关键字:
电容
无源器件
X电容是跨接在电源线的火线(L)和零线(N)之间的电容器。它主要用于降低差模干扰,即火线和零线之间的噪声。X电容通常采用金属化聚丙烯薄膜或聚酯薄膜制成,具有高耐压和自愈特性。其容量范围一般在0.01μF到10μF之间。Y...
关键字:
电容
电容器
在电容降压电路中,温度管理和热效应控制是必不可少的。高温可能导致电容器性能不稳定,甚至损坏其他电子元件。因此,采取适当的散热措施,并合理设计电路布局以提高散热效果至关重要。
关键字:
电容
EMI
电容是一种存储电荷的装置,可以将电流储存在电容器中,并在需要的时候释放出来,其中包括启动时所需的峰值电流。单相电机需要电容主要是利用电容的功率因数修正作用,提高电机的功率因数。功率因数是反映电能转换效率的一个重要指标,单...
关键字:
电容
单相电机
电解电容,这一在电路中不可或缺的元器件,究竟是何方神圣?它以金属箔为正极,通常采用铝或钽材质,而与之紧密贴合的氧化膜,如氧化铝或五氧化二钽,则担任电介质的重任。阴极则是由导电材料、电解质以及其他材料精妙组合而成,其中电解...
关键字:
电解电容
电容
电容补偿,顾名思义,是指利用电容器的补偿作用来提升电力系统的功率因数。其原理在于,当负载增加导致电源输出电压下降时,电容器能发挥其独特的储能特性,通过维持其两端的电压稳定,从而延缓电压下降的趋势。这种并联连接的补偿方式,...
关键字:
电容
电源设计
低频纹波与输出电路的滤波电容容量相关,可通过增大电感、电容参数和采用前馈控制方法来降低。
关键字:
电感
电容
电阻和电容并联后再串联一个电阻的电路结构具有独特的滤波作用和工作原理。通过深入了解这种电路的特性和应用场景,我们可以更好地利用它来实现电路的功能和性能优化。
关键字:
电阻
电容
电容的充放电特性是其通交流阻直流原理的基础。在交流电路中,电压和电流的方向是周期性变化的。当交流电通过电容时,电容会随着电压的变化而不断地充放电。
关键字:
电容
直流