当前位置:首页 > 电源 > 功率器件
[导读] 引言在未知环境中,路况具有复杂性及未知性特点。移动机器人准确的路况探测及其自身的平稳运行,对机载设备与探测任务本身都非常重要。目前,对移动机器人运动控制研究多集

引言

在未知环境中,路况具有复杂性及未知性特点。移动机器人准确的路况探测及其自身的平稳运行,对机载设备与探测任务本身都非常重要。目前,对移动机器人运动控制研究多集中在前向通道的算法研究,有关状态信息检测、传输反馈环节的研究相对较少。

双轴微机械陀螺仪传感器可以测量机器人的俯仰与翻转,但微机械陀螺仪有随机漂移性,无法直接应用,需要对输出值作算法处理。参考文献中的微机械陀螺仪随机漂移的算法,可以在一定程度上解决漂移方面的问题,但仍有改进的空间,滤波性能有待进一步优化提高。在现有自适应UKF算法的基础上,改变比例对称采样策略的相关参数可达到较好的滤波效果。现有的以ATmegal6为微处理器的CAN总线程序还有一些不完备之处,本文采用PeliCAN模式加入了完备的错误分析程序,并支持系统自身测试功能。

1 系统硬件设计

移动机器人运动检测系统原理如图1所示。采用InvenSense公司生产的IDG300型双轴微机械陀螺仪进行移动机器人运动过程的俯仰与翻转角度检测;A/D采样电路的主芯片为8位A/D转换器ADC0809。采集的数据经改进的自适应UKF算法滤波后,经CAN节点向运动控制平台传输机器人的运动状态数据。以ATmegal6为微处理器,SJAl000为CAN协议控制器,PCA82C250为CAN收发器的CAN节点原理如图2所示。

2 系统软件设计

2.1 改进自适应UKF滤波算法

改进的自适应UKF算法如图3所示。

经典UKF滤波算法采用某种策略得到状态估计sigma点集后,大致分两个步骤预测与更新,具体方程见参考文献。不同的采样策略会影响sigma点采样及sigma点个数计算。比例对称采样方法中具体的sigma点采样方法为:

式(1)~式(5)中需要确定3个参数α、β和κ。有一定的经验值,但是微机械陀螺仪不同时间测量输出差别较大,固定的值不能满足角度测量的需要。在陀螺仪输出值有明显差别时,需要采用最小二乘支持向量回归机(LSSVR)对α、β和κ值进行回归,支持向量机对小样本的支持,因此可以做出下一步较准确的预测。结合参考文献中的算法原理,算法步骤如下:

①输入状态初始条件的值(;β=2,κ=O或3-n,n取1~3)。

②卡尔曼滤波估计的参数输入RBF神经网络,利用神经网络的自适应能力和函数逼近能力对这些特征量进行训练调整。

③更新方程。若输出角度输出较准确,则数据发往CAN总线,程序转至第②步。

④若输出角度有偏差,则LSSVR算法调整参数α、β、κ的值,程序转至第②步。

2.2 CAN节点程序设计

以ATmegal6作CAN节点的微处理器需要解决端口(ALE,RD/E,/WR)的模拟问题。CAN节点部分主从机,节点ID地址决定是否接收任务以及发送的顺序;帧格式采用数据帧;帧类型采用扩展帧;PB0~PB7作地址数据总线;PC3输出片选信号;PC4控制SJAl000的复位引脚;INT0(PD2)控制终端信号。错误检测分析程序包括:仲裁丢失捕捉(ALE)、错误代码捕捉(ECC)、错误警告限制(EWLR)、RX错误计数(RXERR)、TX错误计数(TXERR)寄存器配置。

程序流程如下:

①SJAl000寄存器地址配置;

②CAN初始化、进入复位状态配置时钟分频、代码验收、验收屏蔽寄存器。

③等待总线数据,判别报文是否有效:若有效,进入收发函数,发送完毕转至第③步;若报文无效,则进行错误处理,程序转至下一步;

④错误分析,丢掉错误报文。程序转至第③步。

3 实验分析

3.1 数据来源

实验条件:陀螺仪测试系统一套(包括360个脉冲/圈的编码器、IDG-300软硬件系统),使用Matlab仿真平台。测试系统可以在±50°摆动运动,陀螺仪的偏转角度通过编码器输出,精度为1°。

3.2 陀螺仪数据处理

所有数据通过测试系统实验获得。篇幅有限,下面给出X轴输出数据采用改进自适应UKF算法后的滤波效果,如图4~图6所示。从图中可以看出,该方法明显缩成了数据波动范围。

3.3 CAN总线数据传输

对CAN总线数据传输稳定性做了相应实验。取数量相同的数据,分别通过总线和串口进行传输,信号线长度都是2 m,分别进行相同数据量的1 h和24 h数据传输实验。实验结果如表1所列。

CAN总线通信方式是指在两个节点间通信;串口通信是指使用ATmegal6芯片的RXD、TXD引脚功能进行数据传输。正确率的计算方法为:通信正确率=正确接收数量个数/发送数据总个数。

结语

通过改进自适应UKF滤波算法处理新型双轴微机械陀螺仪数据,使微机械陀螺仪输出数

据相对稳定,一定程度上降低了微机械陀螺仪随机漂移。数据传输采用CAN总线通信的方式,提高了数据传输的正确率与稳定性。

但该系统尚不完善,特别是处理微陀螺仪随机漂移问题的方法有待进一步改进,以提高微机械陀螺仪的精度,使机器人运动检测更精确。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 年 6 月 23 日,中国——意法半导体推出新一代集成化栅极驱动器STDRIVE102H和STDRIVE102BH,用于控制三相无刷电机,提高消费电子和工业设备的性能、能效和经济性。

关键字: 栅极驱动器 移动机器人 无刷电机

使用ROS的AMR,用于远程或自主移动的Particle Photon,以及用于实时数据存储和环境映射的Particle Cloud

关键字: ROS Ranger Mini 移动机器人 超声波传感器

恩智浦的MR-VMU-RT1176是一款紧凑型、一体式车辆管理单元(VMU)。 该器件搭载i.MX RT1176跨界MCU,集成双核Arm® Cortex®-M7/M4处理器,并配备全面的传感器套件与丰富的连接选项,能够...

关键字: MCU 移动机器人 传感器

随着自动化仓库和制造设施的迅速发展,谨慎控制过程中的每个组件至关重要。即使是短暂的停机也会造成严重影响。自主移动机器人和自动导引车在该生态系统中发挥着重要作用,需要实施精确的监控和故障安全系统。另一个重点是有效监控电池,...

关键字: 移动机器人 电池管理系统 自动导引车

(2025 年 2 月 13 日,中国上海)作为工业自动化、信息化和数字化转型领域的全球领先企业之一,罗克韦尔自动化 (NYSE: ROK) 于近日正式发布《可持续发展 2024 年度报告》(以下简称“报告”)。这份报告...

关键字: 可持续发展 移动机器人

在现代智能手机的众多功能中,角度检测能力是一项关键技术,它不仅为用户提供了丰富的交互体验,如自动旋转屏幕、增强现实(AR)应用中的视角跟随等,更在陀螺仪检测倾斜角度方面发挥着不可或缺的作用,成为确保陀螺仪精准测量的重要基...

关键字: 智能手机 陀螺仪 精准测量

陀螺仪背后的数学原理与它如何保持直立有关。当你旋转附在马达上的小CD时,它开始旋转得非常快。这就产生了一种叫做“角动量”的东西,它就像一种让物体旋转的特殊能量。

关键字: 陀螺仪 角动量 电机

一个使用NodeMCU的明确和全面的车辆事故和鲁莽驾驶识别和警报系统。与互联网上的其他项目不同,它有一个功能齐全的独立电路。它结合了Invensense的MPU6050, Ublox Neo-6M GPS模块和NodeM...

关键字: 物联网 NodeMCU MPU6050 加速度计 陀螺仪

非结构环境中的车辆因环境复杂 , 实时建图与定位实现困难 。 四轮驱动的实验车辆具有行驶稳定 、转向方便等优势 ,鉴于此 ,利用车辆装备的三维激光雷达和开源程序进行实时定位与建图的研究 ,对搜索和救援机器人 ,林业和采矿...

关键字: 无人化 移动机器人 三维重建

随着科技的不断进步,6轴传感器在现代机器人技术、航空航天、汽车工程等领域的应用越来越广泛。它能够提供三维空间中的线性加速度和角速度信息,为各种精密控制和导航提供关键数据。本文将详细探讨6轴传感器的工作原理、组成部分、应用...

关键字: 6轴传感器 加速度计 陀螺仪
关闭