当前位置:首页 > 电源 > 功率器件
[导读]常规的电源只能工作于第一象限,为负载提供正的输出电压和电流;或者,通过故意将输出误接,作为“负”电源静态地工作于第三象限。但是,常规的电源既不能工作在

常规的电源只能工作于第一象限,为负载提供正的输出电压和电流;或者,通过故意将输出误接,作为“负”电源静态地工作于第三象限。但是,常规的电源既不能工作在第二象限(例如,作为负电源的可调负载),也不能工作于第四象限(例如用特定恒流进行电池放电测试)。此外,它还不能作为负载条件或控制输入的函数,在各种工作模式之间进行天衣无缝的转换。图 1 所示电路采用了“互补的”传输晶体管配置,具有类似普通音频功率放大器的输出拓扑结构,可以实现全四象限功能。这一互补部分在较低电流设计中可以是基本的运算放大器输出端,而在涉及较大功率的情况下,可以使用外接功率 MOSFET。当采用 LT1970 功率运算放大器来控制电路的工作时,由于它具有内部闭环限流特性,控制各种工作模式下的输出就变得非常简单。

四象限电源至少可以提供 ±16V 的调节范围,同时具有高达 ±2A 的输出能力。图 1 示出了基于 LT1970 的基本稳压器电路部分。图 2 示出了用户控制模拟电路部分,它使用 LT1790-5 基准和 LT1882 四精密运算放大器。整个电路由一个预先稳压的 ±17V 主电源(图中未示出)供电。你可以配置用户控制电位VSET和ILIMIT来分别提供缓冲的命令信号VCONTROL和ICONTROL(图 2)。你可以将VCONTROL从-5V调到 5V,然后 LT1970稳压电路再将VCONTROL放大,形成标称的 ±16.5V 输出。你可将ICONTROL从 0V调到 5V;5V 代表最大用户电流极限命令。VCSNK和VCSRC微调电位器对ICONTROL信号进行衰减,为的是分别为吸入模式和供给模式设置精确的满刻度电流(图1)。
负载回路中的一只 0.1Ω 电阻器检测输出电流,并在限流工作期间为 LT1970 提供反馈。有了这只检测电阻器,只要将电流极限微调电位器调到 100%,就可使 LT1970 将输出电流限制在大约 ±5A。但是,由于本电路所要求的最大输出电流为 2A,所以你在校准时可将电位器调大约 40%。为了防止低输出电流时的内部控制争用,LT1970 设置一个与检测电阻器上大约40mA电流对应的最小电流极限阈值。LT1970 的另一个很有用的功能是可以提供状态标志,在本例中,状态标志只是驱动前面板LED指标何时进行限流操作。LT1970 采用双电源连线,从而能对模拟控制部分和内部输出部分独立供电。这种配置的灵活性使你可以通过 V (引脚 19)和 V-(引脚 2)连线中的电阻直接检测运算放大器的输出电流。有了这一功能,就能利用电流反馈方法建立 MOSFET 输出器件的 B 类工作状态,因为在这种状态下,运算放大器的输出电流被转换为栅极驱动电位,从而使 MOSFET 仅仅达到帮助运算放大器提供输出命令所需的导通程度。

由于电源必须驱动电容性重负载(即具有大电容值旁路电容的电路),又由于任何过压都可能会损坏电路,所以要密切注意补偿运算放大器在各种负载条件下的最小过冲。与大多数运算放大器一样,LT1970 的内部回路反馈和外部回路反馈都能达到容性负载容差。在这种情况下,运算放大器本身与负载是电阻去耦的。LT1970 的直流反馈采用差分电压检测来消除调节误差,否则会由于电流检测和与负载串联的引线电阻而产生调节误差。你可以在输出端连接两只廉价的数字式面板电表,实时监视输出情况(图 1)。(两只数字式面板电表并不共享“公共”连线,以免它们供电的复杂化。)请注意:所选的电流检测电阻能优化具有普通 ±200-mV 满刻度灵敏度数字面板表的显示,例如,可以显示到 ±1.999A。要注意的是:当你使用这种四象限电源代替普通单象限电源为敏感的电子设备供电时,将一只反向偏置的肖特基二极管(例如 1N5821 的阴极)连接到正连线和输出接线柱是一个很好的做法。此外,你可以在设计中使用断路继电器和电源定序器,以保护负载在主电源开启和关闭时不受强列反向瞬态过程的影响。
对任何一家电子实验室来说,可调电源都是一种不可缺少的工具。如果可调电源能在供给和吸入两种方向上连续调到0V,可调节地限制电流或两种功能兼而有之,则它在许多情况下就更有用。有了这些额外功能,就能很方便地驱动正在开发或测试的各种电路或对这些电路加负载,否则就需要专用的或定制的设备,如有源加载单元或直流补偿发生器。你如果采用多功能LT1970功率运算放大器来设计线性稳压器,就可以轻松获得这些功能,因为LT1970具有内置的可调节、闭环限流等功能。

作者:Jon Munson,Linear Technology,Milpitas,CA

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。据最新一期《美国国家科学院院刊》报道,美国莱斯大学利用廉价塑料...

关键字: 氢燃料 电源技术解析 太阳能海水 淡化系统

在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。日前,科技部发布了《国家重点研发计划“可再生能源...

关键字: 电池组件 电源技术解析 钙钛矿 协鑫

随着社会的进步,科技的发展,人们对能源的需求越来越大,而现有的能源有限,需要人们不断发展新能源,而太阳能就是一个不错的选择,人们开始大力发展太阳能能发电。武汉大学高等研究院科研人员日前提出新的逐层刮涂技术,该技术不仅使薄...

关键字: 光伏技术 太阳能电池 电源技术解析 新涂膜技术

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。中国要实现在太空中建造一座兆瓦级太阳能发电站,将面临很多前所未有的挑战...

关键字: 太阳能电池 电源技术解析 石墨烯 传统硅片

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。储能电池技术是制约新能源储能产业发展的关键技术之一。光伏电站储能、风电...

关键字: 储能电池技术 电源技术解析 锂离子电池 碳铅电池

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。近日,自从进入夏季以来,持续的高温已经“蒸烤”一段时间了。据中...

关键字: 光伏电站 光伏组件 光伏逆变器 电源技术解析

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。在太阳能离网系统中,光伏控制器的作用是把光伏组件发出来的电,经...

关键字: 光伏控制器 太阳能 电源技术解析 离网系统

在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电。随着越来越多的分布式光伏电站走进千家万户,电站所...

关键字: 光伏电站 电源技术解析 组串逆变器 分布式光伏电站

太阳的光线出现在生活中的每一个地方,人们的生活已经离不开太阳,太阳能不仅为植物生长提供光源,而且也能为人类提供能源,现在的光伏发电就是很大程度上利用了太阳能。从目前太阳能光伏电站的运行管理工作实际经验看,要保证光伏发电系...

关键字: 光伏电站 电源技术解析 光伏电站运维管理 古瑞瓦特

随着社会的进步,科技的发展,人们对能源的需求越来越大,而现有的能源有限,需要人们不断发展新能源,而太阳能就是一个不错的选择,人们开始大力发展太阳能能发电。有机-无机杂化钙钛矿材料由于具有吸收系数高,激子束缚能低和载流子寿...

关键字: 太阳能电池 电源技术解析 西安 钙钛矿电池
关闭