当前位置:首页 > 电池
  • 碱性电池巨头金霸王授权世强为一级代理商,保证最具竞争力的价格

    碱性电池巨头金霸王授权世强为一级代理商,保证最具竞争力的价格

    据悉,全球碱性电池巨头—金霸王,授权世强为一级核心代理商,全线代理其旗下专门服务于工业领域的PROCELL(致芯)电池产品。 PROCELL是全球唯一为专用设备提供碱性电池的高级专业电池品牌,拥有全球首款专业电池双产品线组合,可通过设计独特功率特性的工业碱性电池,大幅延长电池使用寿命,降低更换成本。其碱性电池一向以高品质、高性能及高可靠性著称,备受全球数百万终端用户和知名OEM(原始设备制造商)青睐。 据了解,本次选择与世强元件电商平台合作,目的在于加深PROCELL碱性电池在硬件创新领域的应用,期望为中国工程师提供更便捷的购买渠道。 目前,世强元件电商平台已经成为近200家全球顶级半导体品牌授权一级代理商,有超过50万研发工程师使用平台开发新产品。自PROCELL上线世强元件电商,提供全线碱性电池、大功率锂电池、纽扣锂电池等产品,支持小量快购服务,最低1只,当天发货,世强保证100%原厂正品,同时保证最具竞争力的价格。

    时间:2020-04-26 关键词: 电池 世强 金霸王

  • 特斯拉最新专利曝光!电池效能提升4倍,使用寿命160万公里

    特斯拉最新专利曝光!电池效能提升4倍,使用寿命160万公里

    据外媒报道,特斯拉近日申请了一项单晶镍钴铝(NCA)电极专利,描述了一种全新的电池锂化工艺——镍钴铝电极加热工艺。 据悉,以前的加热方法有时候会生成锂基板L15AIO4杂质,若降低电池中的锂含量,虽然可以减少污染,但也会导致“电化学性能较差”。而采用镍钴铝电极加热工艺,不仅可以提高电池质量,同时还能节省制造成本。 (资料图) 正如专利中所提到的,电池将被加热到足以使单晶生长的温度。修正后的锂与其它金属的比例,将限制第一次加热过程中杂质的形成。然后,锂将在低于第一个加热周期的温度下进行第二次加热。这一过程将有助于开发出无杂质的单晶NCA,而污染物的减少又将有助于延长电池的整体使用寿命。 参与该专利的一名研究人员指出,采用镍钴铝电极加热工艺,可使电池在生命周期内充电4000多次,相比特斯拉S型车的典型锂离子电池性能提升了4倍,而电池的使用寿命也将有望超过100万英里(约为160.9万公里)。 (不同温度下的锂离子表现) 除了提交电池专利之外,特斯拉最近还在忙于收购几家电池公司,其中包括Maxwell Technologies和Hibar Systems。据悉,这两家公司都在开发能够实现更好的电池质量和更高效的生产成本技术。相对简单的开发,如特斯拉最近在专利中描述的那些,收购这两家公司也有助于实现“延长电池使用寿命”的目标。 值得一提的是,特斯拉电池技术的发展,可能会使其汽车的使用寿命达到20-30年,远远长于汽油动力汽车。由此推断,这很可能成为社会加速走向可持续发展的催化剂。 —— 知识“充电站” —— 1、镍钴铝(NCA)和镍钴锰(NCM)的区别 目前,特斯拉所使用的锂镍电池主要是镍钴铝三元材料,而我国使用的还是镍钴锰,这是一个很大的突破。 首先,NCA电池的性能更为优秀,但由于热失控温度较低,对制作工艺的要求也相对较高;而NCM电池则热失控温度较高,可以降低制作工艺要求,因而成为了国内电池企业的主要研发方向。 其次,无论是NCA,还是NCM,两者都把811高镍电池作为了重点突破方向。因为随着镍元素含量的升高,三元正极材料的比容量逐渐升高,电芯的能量密度也会随之提高。 举例来说,特斯拉采用的2170号电池能量密度之所以能够高达300WH/kg,就是因为其镍钴铝比例分别为8:1.5:0.5。这不仅将有利于提升电池储能密度,还因为降低钴金属使用量而大幅降低了电池制造成本。 2、延缓电动汽车电池衰退的小技巧 ◆ 避免过度放电:其实,电动车的电池组和一般3C产品锂电池的性质非常相近,但差别在于电动汽车大多使用18650或21700电池组串接,而3C产品由于薄体化需求多则使用的是锂聚合物(薄型或其它包装形状)电池,但保养的原则都是一样的。 根据现代原厂的说法,电动汽车的电池组应避免过度放电,尤其是低于20%时,过度放电有可能会导致电池容量受损,因而降低总能量。而且在大多数情况下,电池容量的降低是不可逆的。 ◆ 经常充放电:跟手机电池相同,电动汽车的电池组应该保持经常充放电的状态。那么可能有人会担心,经常充放电会导致电池受损,但其实正好相反,电池应该经常保持在40%-80%的区间内。建议每隔2-3天就充一次电,以保持电池的活性。 ◆ 避免急加速或极端驾驶:以锂电池的特性来说,稳定的充放电有助于减缓衰退情况的到来,而急加速或极端驾驶状态,会在短时间内耗损大量能量。这意味着,电池组在很短的时间内以大功率的状态输出,驾驶人应该稳定的驾驶车辆,除了避免电池提早衰退,此举也有助于车辆的能耗表现。 ◆ 尽量停放在阴凉处:对于锂电池来说,过热与过冷的情况会严重影响效能表现,过冷的环境会使电池的续航能力降低,而过热的环境则会提前让电池衰退的情况发生,同时也会影响续航能力。如果有条件的话,建议电动汽车应该尽量选择停放在阴凉处。

    时间:2020-04-26 关键词: 电池 电动汽车 特斯拉

  • 采用PLC和PWS系列触摸屏实现锂锰扣式电池生产线系统的软硬件设计

    采用PLC和PWS系列触摸屏实现锂锰扣式电池生产线系统的软硬件设计

    目前国内锂锰电池大部分的生产设备还停留在手工或半机械化程度,对于扣式电池来说,这样的生产效率十分低下,研制具有自主知识产权的锂锰扣式电池自动组装生产线是非常必要的,也是我国工控自动化的一大进步。 1、锂锰扣式电池生产线的组成及其功能 本锂锰扣式电池生产线是用于组装CR2032电池的,根据锂锰扣式电池的生产工艺,其主要任务是:在带有集流网、负极片的负极壳体内,依次加入隔膜和饱浸电解液的正极片,并补充正极片中挥发的电解液,并在保证电解液完全渗透的前提下,加盖正极壳体并封口。为此生产线主要由剪切隔膜纸工序、注电解液及上正极片工序、正极壳体装配工序以及封口工序等4个工序组成。 2、PLC控制系统的硬件设计 由于PLC具有控制精度高、操作方便、通用性好、可靠性高等优点,能适应工业现场的恶劣环境,所以采用PLC作为生产线的主控制系统,能满足生产的需要。 根据锂锰扣式电池生产线的具体情况,选用了日本Omron公司的可编程控制器和扩展模块作为生产线的核心控制部分;采用PWS系列触摸屏(台达电子),触摸屏和PLC之间通过RS2232C进行通讯。触摸屏用于按键输入、参数设置、监控画面显示以及故障原因显示等功能。锂锰扣式电池生产线控制系统框图如图1所示。 在PLC控制系统中,主要的检测元件有对射光电开关、漫反射光电开关、接近开关、磁性开关、压力传感器、行程开关等;执行部件主要有电机、气缸、振动料斗、海霸泵、冲床、声光报警器以及状态显示灯等。 在这个系统中,关键技术环节是料斗的控制,它是影响电池表面质量的一个关键因素;各道工序之间的协调一致,也是保证生产线正常工作的关键。 图1 控制系统框图 2.1 振动料斗的控制 负极壳、正极片和正极盖均采用振动料斗进行自动上料。 若正极片和正极盖在料斗中反复运动,则会损坏正极片和将正极盖划伤,因此在振动料斗的料道上增加了料满检测传感器,一旦料满则停止振动料斗;当料道上的料不满时,振动料斗开始振动。振动料斗控制框图如图2所示。 图2 振动料斗控制框图 2.2 各道工序之间的协调 由于电池组件的尺寸非常小,给生产线的上料和输送带来了很大困难,再加上某些工序可能会产生次品,中间还会有次品剔除的情况,电池组装生产线的4个工序之间很难做到完全同步。在生产线的输送线上安装了检测传感器,当输送线上的料较少(少于传感器的安装位置)时,下一个工序的转盘就自动停止工作;当前面的料输送过来,超过了传感器的安装位置时,转盘自动开始转动,恢复工作。这样就可以保证某道工序的连续运行。在输送线上还装有堵料检测传感器,一旦发生堵料现象,将进行报警并自动停车,工序协调框图如图3所示。 图3 工序协调控制框图 3、PLC控制系统的软件设计 该生产线中执行元件和状态检测元件的种类和数量较多,是一个比较复杂的控制系统,我们采用模块化的思路,使用梯形图来设计控制系统的软件,将整个系统的控制程序根据所处的位置分成4个模块,即剪切隔膜纸模块、注电解液及上正极片模块、正极壳体装配模块以及封口模块,前3个模块以3个转盘为主线,协调彼此的动作,而第4个模块以封口压力机作为主线,来协调彼此的动作。这样程序的条理性增强,可读性好,修改程序方便。 在系统中充分利用触摸屏的优势,除了完成按键的输入功能以外,还可以显示各工序和整条生产线的监控画面;若工作过程中出现故障,除了进行声光报警外,还在触摸屏上显示故障的种类、原因以及解决办法,方便了操作;在触摸屏上还显示生产的产品数量。 为了提高锂锰扣式电池生产线的可靠性,保证设备和人员的安全,除了选用优质元件之外,还采取了许多有效保护措施,例如,为了防止由于气压降低或气路出现故障而使转动盘损坏气缸,设置了压力检测传感器,一旦压力低于给定值,则自动停止转盘并报警;为了防止封口冲床在工作时出现人身事故,在冲床上安装了光电检测传感器,一旦人手接近冲头,则设备自动停机并发出报警信息;为了防止由于调整失误而损坏转盘上的气缸,特地增加了机动互锁装置,从而有效地保护机械和气动装置;此外控制软件中还在多处使用了冗余控制,从而保证了设备的正常安全运行。 4、结语 为了提高系统的可维护性,在触摸屏和设备上设置了许多状态信息的指示和故障显示以及声光报警。在PLC系统内部设置了故障诊断功能,当出现故障时就自动停车,实现自我保护。为了便于用户的操作,缩短维修时间,在PLC控制软件中,巧妙地运用了HR型保持继电器和计数器的保持性,使得生产线在任意时刻停机,在排除故障后,不必手动调整,就可继续正常工作。经实际使用表明:该控制系统具有结构简单、成本低、可靠性高、使用灵活方便、便于维护等优点,在实际生产使用中效果很好。

    时间:2020-04-26 关键词: 触摸屏 plc 电池

  • 用病毒造次世代电池驱动特斯拉?这位美国科学家还真没疯

    用病毒造次世代电池驱动特斯拉?这位美国科学家还真没疯

    2009 年时,麻省理工生物工程教授 Angela Belcher 专程到白宫为新官上任的奥巴马总统展示了一种新型电池。这电池到底什么来头,居然能让总统如此感兴趣? 原来,Belcher 掌握了新的锂电池正负极制造技术,但材料中有一项并不是来自元素周期表,而是我们谈之色变的“病毒”。这一工程突破不但有望降低电池制造过程中的毒性,还能提高电池性能。当时,奥巴马准备投入 20 亿美元推进电池技术的进步,而 Belcher 的“病毒”电池就是未来风向之一。 十年过去了,Belcher 的“病毒”电池也取得了飞速进步,她制造的病毒可以与 150 多种不同的材料一起使用。Belcher 还成功证明自己的的技术可以用于制造其他材料,比如太阳能电池。 当然,Belcher 用病毒驱动电动车的愿望还没有实现,但这项技术离走出实验室已经不远了。 被称为自然界微观僵尸的病毒也有跨越生与死鸿沟的能力。它们拥有完整的基因组,是不折不扣的生物,但与其他生物不同,没有宿主它们又无法繁殖。不过在 Belcher 看来,这些特性反而可以用在纳米工程中,在提升电池能量密度、寿命与充电速率的同时,降低制造过程中的污染。 “在电池领域,有越来越多的人开始探索纳米结构形式的正负极材料了。”约翰霍普金斯应用物理实验室高级研究专家 Konstantinos Gerasopoulos 解释道。“制备纳米材料时我们可以使用多种常规化学技术。至于病毒等生物材料,其好处在于它们已经以“纳米”形式存在,因此其本质上是用于合成电池材料的天然模板或支架。” 神奇的大自然孕育了许多方法,无需借助病毒,就可以用无机材料构建有用的结构。Belcher 最喜欢的例子就是石决明(一种贝壳),它拥有纳米级的高度结构化,轻巧且坚固。经过数千万年的进化,石决明 DNA 产生的蛋白质可从富含矿物质的水生环境中提取钙分子,并将其沉积在自己体内的有序结构层中。虽然没人拿石决明制造电池,但是 Belcher 意识到,我们可以在病毒中用上同样的基本工艺,从而为人类制造有用的材料。 “我们一直在试图通过生物工程控制那些通常无法通过生物技法制造的纳米材料。”Belcher 说道。“我们扩充了自己的生物学工具箱,以处理那些全新材料。” Belcher 选的病毒是 M13 噬菌体,它是一种能在细菌中复制的雪茄状病毒。尽管它不是唯一可以用于纳米工程的病毒,Belcher 还是认为它是最佳选择,因为 M13 噬菌体的遗传物质很容易操控。 为了征召病毒生产电极,Belcher 将其暴露于她希望病毒操纵的材料上。一些病毒 DNA 中的自然或工程突变会导致它们锁在材料上。随后,Belcher 提取这些病毒并将其用于感染细菌,从而产生数百万份相同的病毒副本。这个过程一遍又一遍地重复,并且随着每次迭代,病毒都慢慢进化成了经过精准调整的电池架构师。 Belcher 的转基因病毒其实分不清电池的正负极,但这个能力对它们并不重要。在设定中,它们的 DNA 就只需解决简单任务,但如果数百万个病毒搞“毒海战术”,就能造出可用的材料。 举例来说,转基因的病毒可能被改造为只需表达表面上的一种蛋白质,该蛋白质能吸引氧化钴颗粒覆盖自己的身体。病毒表面上的其他蛋白质会吸引越来越多的氧化钴颗粒。这样就形成了一个钴氧化物纳米线,它由连接的病毒组成,可用于电池电极。 Belcher 的工艺将 DNA 序列与元素周期表中的元素进行匹配,从而形成非自然选择的加速形式。对 DNA 进行单向编码可能会导致病毒锁定在磷酸铁上,但是,如果对代码进行了调整,该病毒可能就会对氧化钴更感兴趣。 该技术可以扩展到元素周期表中的任何元素,只需找到与之匹配的 DNA 序列即可。从这个角度来讲,Belcher 所做的工作与宠物狗爱好者进行的选择性繁殖差别并不大,后者以创造出完美的狗为己任,而这样的狗大自然可造不出来。不过,Belcher 可不是在繁殖贵宾犬,而是在繁殖制造病毒的电池。 简言之,Belcher 正在使用她的病毒组装技术来打造电极,并将该技术用在一系列不同的电池类型中。 当年,她为奥巴马演示的电池是标准的锂离子纽扣电池,就像石英表中使用的那种。不过,在大多数情况下,Belcher 所用的电极具有更奇特的化学性质,类似锂空气和钠离子电池。 她指出,这样做是因为与成熟的锂离子电池生产商竞争并没有多大意义。“我们没有试图与当下的技术进行竞争。”Belcher 说道。“我们正在研究一个问题,即‘可以用生物学来解决一些迄今为止尚未解决的问题吗?’” 当然可以,其中一种前途广大的应用就是使用病毒创建高度有序的电极结构,以缩短离子通过电极时的路径。伊利诺伊大学材料研究实验室主任 Paul Braun 就表示,这将增加电池的充电和放电速率,可以称得上“能量存储领域的绝技之一”。他还指出,原则上病毒组装能显著改善电池电极的结构并提高其充电率。 眼下,Belcher 的病毒组装电极在结构上基本是随机的,但她和她的同事正在努力将病毒引导为更有序的排列。 尽管如此,她的病毒电池的性能还是优于传统电极,比如更高的电池容量,循环寿命和充电率。不过 Belcher 还是强调,病毒组装技术最大的好处在于其环保属性。传统的电极制造技术要求使用有毒化学物质和高温,而 Belcher 所需的只是电极材料,处在室温的水和一些转基因病毒。 “我的实验室现在最关注清洁能源技术。”Belcher 解释道。这涵盖了诸如电极材料的来源以及因制造电极而产生的废品之类的问题。 Belcher 的病毒电池还未正式商业化,不过她和她的同事最近发了多篇论文(正在审阅中)详细阐述这一技术在能源及其他行业的商业化应用前景。 当 Belcher 首次提出利用病毒制造对人类有用的东西时,她遭到了很多同事的怀疑。她回忆称:“人们都说我疯了。” 现在,这个想法似乎不再牵强,但将该技术从实验室带入现实世界可没那么容易。 “传统的电池制造使用廉价的材料和工艺,但要想通过病毒提高性能并解决量产问题,则需要数年的研究和相关费用。”印第安纳大学布卢明顿分校化学教授 Bogdan Dragnea 解释道。“直到最近,我们才从物理特性的角度了解了基于病毒材料的潜力所在。” 基于病毒电池的技术,Belcher 已经成立了两家公司。一家是 2004 年成立的 Cambrios Technologies,该公司用新的制造工艺来生产触摸屏所用的电子零部件。 至于第二家公司 Siluria Technologies,则在将甲烷转化为乙烯(一种广泛用于制造的气体)的过程中使用病毒。 除此之外,Belcher 还使用病毒来组装太阳能电池,但这项技术的效率暂时还不足以与新型钙钛矿太阳能电池竞争。 当然,病毒参与制作电极这件事能否达到商业化生产的标准仍是一个悬而未决的问题。 Gerasopoulos 就表示:“在电池生产设备中会投入大量材料,因此要达到生物分子的水平并不是一件容易的事。”好在,他并不认为该障碍是无法克服的,但“到目前为止,这可能是最主要的挑战之一。” 即使我们永远开不上病毒驱动的特斯拉,Belcher 的生物驱动纳米工程技术在与电力无关的领域也前景广大。在麻省理工学院,Belcher 正与一个利用病毒组装技术生成肿瘤追踪纳米粒子的科学家团队合作。 这些纳米粒子旨在追踪体积太小而无法被医生检测到的癌细胞,可以极大改善癌症患者的早期检测并降低死亡率。此外,这些粒子还可以用能杀死癌细胞的生物材料来武装,虽然这个目标离我们还有点远。 在人类历史上,病毒一直是疾病和死亡的先兆,但 Belcher 的工作却为我们指引了未来。原来,这些死神一般的家伙真的可以为人所用。

    时间:2020-04-24 关键词: 科学家 电池 驱动 特斯拉 病毒

  • LG化学和三星SDI宣布关闭美国电池工厂直至4月13日

    LG化学和三星SDI宣布关闭美国电池工厂直至4月13日

    3月26日消息,据国外媒体报道,由于受新型冠状病毒疫情影响,韩国动力电池企业LG化学(LG Chem)与三星SDI宣布,关闭它们在美国的电池工厂直到4月13日。本周三,LG化学表示,由于新型冠状病毒的大肆蔓延,该公司已经关闭了其位于美国密歇根州的电动汽车电池厂。与此同时,三星SDI也表示,它已经关闭了其位于密歇根州的电池厂。在LG化学和三星SDI宣布关闭它们的美国电池工厂前,密歇根州州长格雷琴·惠特默(Gretchen Whitmer)在全州范围内发布了一项居家令,以遏制新型冠状病毒的蔓延。该命令已于本周二在密歇根州生效。早在2012年的时候,LG化学就在密歇根州建立了一座电池工厂。LG化学与通用汽车即将合作建设的一座新电池工厂,将是该公司在美国建设的第二座电池厂。通用汽车与LG化学将投资20多亿美元(双方将各投资10多亿美元)在俄亥俄州的Lordstown地区建造这座新电池工厂,以为通用汽车计划推出的电动汽车生产电池。该工厂将于2020年年中开工建设,预计将创造约1100个新工作岗位,年发电量将超过30千兆瓦时。目前,LG化学在韩国、中国、美国和波兰拥有5家电池厂,电池总产能为70亿瓦时。该公司计划在今年年底前将电池产能提高到100千兆瓦时,这足以为160万辆电动汽车提供电池。LG化学为排名前20的汽车品牌中的13个品牌提供电动汽车电池,包括大众、雷诺、通用汽车和现代汽车。去年8月,特斯拉同意从LG化学采购电池。初期,该公司将把电池用于上海“3号超级工厂”(特斯拉在美国以外的首家工厂)所生产的Model 3,随后还将用于Model Y。消息人士透露,特斯拉与LG化学达成的并非独家采购协议,这意味着特斯拉上海超级工厂所生产的电动汽车还有可能采购其他厂商的电池。三星SDI是三星集团旗下的电池制造商。去年7月,该公司与瑞典著名豪华汽车品牌沃尔沃集团(Volvo Group)达成战略联盟,该联盟将包括联合为沃尔沃电动卡车开发电池组。三星SDI将提供电池和模块,以满足沃尔沃电动卡车的需求。去年11月,宝马与其第二大电池供应商三星SDI签署了价值29亿欧元(约合人民币225亿元)的电池供应合同,合同供货时间为2021年到2031年。

    时间:2020-04-24 关键词: 工厂 三星 电池 lg

  • 荣耀畅玩9A官宣:三天一充、价格可低至799元

    荣耀畅玩9A官宣:三天一充、价格可低至799元

    3月23日下午,荣耀官方宣布了新款机型“荣耀畅玩9A”,将于3月30日在荣耀30S发布会上一同登场。 按照官方说法,荣耀畅玩9A是“新生代小明星”,“不仅是巨肺小霸王,更拥有超续航体质”,号称三天只需充一次电。 巧合的是,就在今日一早,MED-AL20、MOA-AL20两款荣耀新机入网工信部,看起来就是这个荣耀畅玩9A。 工信部给出的数据是该机搭载6.3英寸FHD+分辨率屏幕,水滴全面屏设计,后置指纹识别,电池容量4900mAh(额定应该为5000mAh),这也符合荣耀畅玩9A大电池、长续航的特点,但充电功率疑似只有10W。 其他配置暂时不详,此前有外媒预计会搭载1300万+200万像素后置双摄,继续使用联发科Helio P35处理器,提供4GB内存、64/128GB存储,比上代的3GB、32/64GB有明显提升。 荣耀畅玩A系列是荣耀旗下最为入门级的序列,最近三代产品(6A/7A/8A)都是799元起价,相信荣耀畅玩9A也差不多。 荣耀畅玩8A

    时间:2020-04-24 关键词: 电池 续航 荣耀 荣耀畅玩9a

  • 外媒:特斯拉内华达电池工厂计划减少75%现场员工

    新浪科技讯 北京时间3月27日下午消息,据路透社,由于新型冠状病毒的大流行,美国电动汽车制造商特斯拉计划将其内华达州电池厂的现场员工减少75%左右。 此前,该公司的日本电池合作伙伴松下公司表示,将在本周缩减内华达州工厂的运营规模,然后关闭工厂14天。 这家工厂生产的是特斯拉Model 3系列的电动机和电池组。 奥斯汀·奥斯本(Austin Osborne )在县政府网站上发帖称:“特斯拉已经通知我们,斯托里县的超级工厂将在未来几天内减少大约75%的现场员工。” 目前没有进一步的细节透露,也不清楚有多少员工在这家工厂工作。特斯拉没有立即回应路透社的置评请求。 早些时候报道了停产计划的《雷诺公报(Reno Gazette Journal)》称,松下在内华达州的工厂有大约3500名员工。 特斯拉上周表示,将从3月23日起暂时停产位于旧金山湾区的汽车工厂,以及位于纽约的太阳能屋顶瓦工厂。 然而,特斯拉首席执行官埃隆·马斯克表示,该公司将“尽快”重新开放纽约工厂,为新型冠状病毒患者制造呼吸机。 周四,特斯拉在发给员工的一封电子邮件中表示,该公司已经有两名员工检测出新型冠状病毒阳性,但他们过去两周内一直在家里工作,上班时也没有出现症状。该公司没有透露这些员工在哪个部门工作,也没有透露他们的工作地点。(小樱)

    时间:2020-04-23 关键词: 电池 特斯拉 内华达

  • 用病毒造次世代电池,这位美国科学家还真没疯

    用病毒造次世代电池,这位美国科学家还真没疯

    2009 年时,麻省理工生物工程教授 Angela Belcher 专程到白宫为新官上任的奥巴马总统展示了一种新型电池。这电池到底什么来头,居然能让总统如此感兴趣?原来,Belcher 掌握了新的锂电池正负极制造技术,但材料中有一项并不是来自元素周期表,而是我们谈之色变的“病毒”。这一工程突破不但有望降低电池制造过程中的毒性,还能提高电池性能。当时,奥巴马准备投入 20 亿美元推进电池技术的进步,而 Belcher 的“病毒”电池就是未来风向之一。十年过去了,Belcher 的“病毒”电池也取得了飞速进步,她制造的病毒可以与 150 多种不同的材料一起使用。Belcher 还成功证明自己的的技术可以用于制造其他材料,比如太阳能电池。当然,Belcher 用病毒驱动电动车的愿望还没有实现,但这项技术离走出实验室已经不远了。被称为自然界微观僵尸的病毒也有跨越生与死鸿沟的能力。它们拥有完整的基因组,是不折不扣的生物,但与其他生物不同,没有宿主它们又无法繁殖。不过在 Belcher 看来,这些特性反而可以用在纳米工程中,在提升电池能量密度、寿命与充电速率的同时,降低制造过程中的污染。“在电池领域,有越来越多的人开始探索纳米结构形式的正负极材料了。”约翰霍普金斯应用物理实验室高级研究专家 Konstantinos Gerasopoulos 解释道。“制备纳米材料时我们可以使用多种常规化学技术。至于病毒等生物材料,其好处在于它们已经以“纳米”形式存在,因此其本质上是用于合成电池材料的天然模板或支架。”神奇的大自然孕育了许多方法,无需借助病毒,就可以用无机材料构建有用的结构。Belcher 最喜欢的例子就是石决明(一种贝壳),它拥有纳米级的高度结构化,轻巧且坚固。经过数千万年的进化,石决明 DNA 产生的蛋白质可从富含矿物质的水生环境中提取钙分子,并将其沉积在自己体内的有序结构层中。虽然没人拿石决明制造电池,但是 Belcher 意识到,我们可以在病毒中用上同样的基本工艺,从而为人类制造有用的材料。“我们一直在试图通过生物工程控制那些通常无法通过生物技法制造的纳米材料。”Belcher 说道。“我们扩充了自己的生物学工具箱,以处理那些全新材料。”Belcher 选的病毒是 M13 噬菌体,它是一种能在细菌中复制的雪茄状病毒。尽管它不是唯一可以用于纳米工程的病毒,Belcher 还是认为它是最佳选择,因为 M13 噬菌体的遗传物质很容易操控。为了征召病毒生产电极,Belcher 将其暴露于她希望病毒操纵的材料上。一些病毒 DNA 中的自然或工程突变会导致它们锁在材料上。随后,Belcher 提取这些病毒并将其用于感染细菌,从而产生数百万份相同的病毒副本。这个过程一遍又一遍地重复,并且随着每次迭代,病毒都慢慢进化成了经过精准调整的电池架构师。Belcher 的转基因病毒其实分不清电池的正负极,但这个能力对它们并不重要。在设定中,它们的 DNA 就只需解决简单任务,但如果数百万个病毒搞“毒海战术”,就能造出可用的材料。举例来说,转基因的病毒可能被改造为只需表达表面上的一种蛋白质,该蛋白质能吸引氧化钴颗粒覆盖自己的身体。病毒表面上的其他蛋白质会吸引越来越多的氧化钴颗粒。这样就形成了一个钴氧化物纳米线,它由连接的病毒组成,可用于电池电极。Belcher 的工艺将 DNA 序列与元素周期表中的元素进行匹配,从而形成非自然选择的加速形式。对 DNA 进行单向编码可能会导致病毒锁定在磷酸铁上,但是,如果对代码进行了调整,该病毒可能就会对氧化钴更感兴趣。该技术可以扩展到元素周期表中的任何元素,只需找到与之匹配的 DNA 序列即可。从这个角度来讲,Belcher 所做的工作与宠物狗爱好者进行的选择性繁殖差别并不大,后者以创造出完美的狗为己任,而这样的狗大自然可造不出来。不过,Belcher 可不是在繁殖贵宾犬,而是在繁殖制造电池的病毒。简言之,Belcher 正在使用她的病毒组装技术来打造电极,并将该技术用在一系列不同的电池类型中。当年,她为奥巴马演示的电池是标准的锂离子纽扣电池,就像石英表中使用的那种。不过,在大多数情况下,Belcher 所用的电极具有更奇特的化学性质,类似锂空气和钠离子电池。她指出,这样做是因为与成熟的锂离子电池生产商竞争并没有多大意义。“我们没有试图与当下的技术进行竞争。”Belcher 说道。“我们正在研究一个问题,即‘可以用生物学来解决一些迄今为止尚未解决的问题吗?’”当然可以,其中一种前途广大的应用就是使用病毒创建高度有序的电极结构,以缩短离子通过电极时的路径。伊利诺伊大学材料研究实验室主任 Paul Braun 就表示,这将增加电池的充电和放电速率,可以称得上“能量存储领域的绝技之一”。他还指出,原则上病毒组装能显著改善电池电极的结构并提高其充电率。眼下,Belcher 的病毒组装电极在结构上基本是随机的,但她和她的同事正在努力将病毒引导为更有序的排列。尽管如此,她的病毒电池的性能还是优于传统电极,比如更高的电池容量,循环寿命和充电率。不过 Belcher 还是强调,病毒组装技术最大的好处在于其环保属性。传统的电极制造技术要求使用有毒化学物质和高温,而 Belcher 所需的只是电极材料,处在室温的水和一些转基因病毒。“我的实验室现在最关注清洁能源技术。”Belcher 解释道。这涵盖了诸如电极材料的来源以及因制造电极而产生的废品之类的问题。Belcher 的病毒电池还未正式商业化,不过她和她的同事最近发了多篇论文(正在审阅中)详细阐述这一技术在能源及其他行业的商业化应用前景。当 Belcher 首次提出利用病毒制造对人类有用的东西时,她遭到了很多同事的怀疑。她回忆称:“人们都说我疯了。”现在,这个想法似乎不再牵强,但将该技术从实验室带入现实世界可没那么容易。“传统的电池制造使用廉价的材料和工艺,但要想通过病毒提高性能并解决量产问题,则需要数年的研究和相关费用。”印第安纳大学布卢明顿分校化学教授 Bogdan Dragnea 解释道。“直到最近,我们才从物理特性的角度了解了基于病毒材料的潜力所在。”基于病毒电池的技术,Belcher 已经成立了两家公司。一家是 2004 年成立的 Cambrios Technologies,该公司用新的制造工艺来生产触摸屏所用的电子零部件。至于第二家公司 Siluria Technologies,则在将甲烷转化为乙烯(一种广泛用于制造的气体)的过程中使用病毒。除此之外,Belcher 还使用病毒来组装太阳能电池,但这项技术的效率暂时还不足以与新型钙钛矿太阳能电池竞争。当然,病毒参与制作电极这件事能否达到商业化生产的标准仍是一个悬而未决的问题。Gerasopoulos 就表示:“在电池生产设备中会投入大量材料,因此要达到生物分子的水平并不是一件容易的事。”好在,他并不认为该障碍是无法克服的,但“到目前为止,这可能是最主要的挑战之一。”即使我们永远开不上病毒驱动的特斯拉,Belcher 的生物驱动纳米工程技术在与电力无关的领域也前景广大。在麻省理工学院,Belcher 正与一个利用病毒组装技术生成肿瘤追踪纳米粒子的科学家团队合作。这些纳米粒子旨在追踪体积太小而无法被医生检测到的癌细胞,可以极大改善癌症患者的早期检测并降低死亡率。此外,这些粒子还可以用能杀死癌细胞的生物材料来武装,虽然这个目标离我们还有点远。在人类历史上,病毒一直是疾病和死亡的先兆,但 Belcher 的工作却为我们指引了未来。原来,这些死神一般的家伙真的可以为人所用。

    时间:2020-04-23 关键词: 电池

  • 首发949元!华为畅享10e发布:5000mAh大电池、告别3GB内存

    首发949元!华为畅享10e发布:5000mAh大电池、告别3GB内存

    3月1日晚间,华为低调发布了新款畅享10e,这也是畅享10、畅享10S、畅享10 Plus之后畅享10家族的第四名成员。2015年,华为畅享系列累计销量已超2亿台。 畅享10e依然采用水滴屏造型,开孔直径仅2.65mm,但屏幕尺寸从6.09英寸增大至6.3英寸,IPS全贴合,分辨率1600×720,屏占比达88.4%,色域覆盖70% NTSC,珍珠白、翡冷翠、幻夜黑三种配色。 后置摄像头从1300万像素单摄升级为1300万像素主镜头+200万像素景深镜头组成的双摄,光圈分别为F1.8、F2.4,前置摄像头则还是800万像素,光圈F2.0。 处理器依然沿用不多见的联发科Helio P35 MT6765,12nm工艺,八核心A53 2.3GHz,PowerVR GE8320 GPU,荣耀畅玩8A、小米Play、vivo Y3等机器用的也是它。 内存从3GB增大至4GB,存储则从32GB来到64/128GB,并支持microSD卡扩展。 电池也是一大亮点,从上代的3020mAh增大至5000mAh,支持为其他华为手机反向充电,不过自带充电器规格仅为5V2A(上代还是5V1A)。 其他方面还有2.4GHz 802.11n Wi-Fi、蓝牙5.0、microUSB接口、3.5mm耳机孔,操作系统预装EMUI 10。 华为畅享10e 4GB+64GB 999元、4GB+128GB 1199元,现已上线预售,定金1元可抵51元,首发实际到手价949元、1149元。

    时间:2020-04-22 关键词: 华为 联发科 内存 电池 畅享10e p35 mt6765

  • Find X2用上行业最快65W闪充:SuerpVOOC 2.0、38分钟充满

    Find X2用上行业最快65W闪充:SuerpVOOC 2.0、38分钟充满

    OPPO刚刚发布了Find X2系列手机,快充方面使用的是SuperVOOC 2.0,号称行业速度最快,65W功率,最快38分钟充满Find X2 Pro。 两款手机中,Find X2配备的是4200mAh,Find X2 Pro是4260mAh,采用串联双电芯设计,支持SuperVOOC 2.0超级闪充,最高支持10V/6.5A,65W功率。 OPPO表示,65W SuperVOOC 2.0闪充可以在38分钟内将Find X2 Pro充满。 在安全性上,65W SuperVOOC 2.0闪充支持5重安全防护,从适配器到充电线再到手机全覆盖。 Find X2系列手机中内置了一款定制的电池安全芯片,不仅可以实时实时监测充电情况,还可以监测手机电池是否受到了外力损伤,提高安全性。 在兼容性上,65W SuperVOOC 2.0闪充搭配之前的VOOC充电器能够支持20W快充,同时还支持市面上的QC/PD标准的9V/2A快充,只需要一个充电器即可满足手机、电脑等设备使用。 有些奇怪的是,之前爆料显示Find X2系列还会有30W无线快充,但是发布会及管网规格表上都没有无线充电的事了。

    时间:2020-04-21 关键词: 2.0 电池 oppo find 快充 x2 闪充 supervooc

  • 一图看懂华为畅享10e:四大亮点、处理器还是联发科P35

    一图看懂华为畅享10e:四大亮点、处理器还是联发科P35

    3月1日晚间,华为低调发布了畅享10系列家族第四款、也是最后一款型号—;—;畅享10e。它定位于千元主流市场,拥有大屏幕、大电池、大存储、大电量。 该机采用6.3英寸珍珠屏(华为口中的水滴屏)造型设计,屏占比88.4%,定制前置小微摄像头器件使得“水滴”直径仅为2.65毫米,配色则有珍珠白、翡冷翠、幻夜黑三种选择。 电池容量从上代的3020mAh大幅增加到5000mAh,搭配OTG数据线还可为其他手机充电、备份数据,同时内存告别3GB而来到4GB起步,存储容量则从32GB提升到64GB起步,还有EROFS超级文件压缩技术。 摄像头,后置增加一颗200万像素景深变为双摄,搭配新一代背景虚化算法。畅享9e的一大亮点SuperSound大音量解决方案也延续下来,手机外放响亮细腻。 唯一比较欠缺的可能就是处理器还是联发科P35 MT6765,12nm工艺,八核心A53 2.3GHz,集成PowerVR GE8320 GPU。 操作系统预装最新的EMUI 10.0。 华为畅享10e 4GB+64GB 999元、4GB+128GB 1199元,现已开放预约,到手优惠50元,3月5日0点正式开卖。

    时间:2020-04-21 关键词: 华为 联发科 内存 电池 畅享10e p35 mt6765

  • 特斯拉自制电池秘密项目曝光 电池成本降超30%

    网易科技讯 2月27日消息,据外媒报道,长期以来,始终有传言称,特斯拉正在为其电动汽车制造自己的电池。现在,特斯拉的秘密电池项目Roadrunner更多细节曝光,该公司将“用机器制造机器”的策略,大规模生产更便宜的电池。 特斯拉的目标是将每千瓦时锂电池的成本降至100美元,这将使电动汽车能够在没有补贴的情况下达到与燃油车价格相当的水平。如果再加上批量生产带来的优势,这可能会加速电动汽车普及,因为它将使价格相对较低而利润率较高的电动汽车能够大量生产。 在今年1月3日,《中国能源报》的一篇报道中称,彭博新能源财经(BNEF)统计的数据显示,2019年电动汽车动力电池每千瓦时成本约为156美元,较2010年每千瓦时1100美元的成本下降了85%。BNEF指出,按照目前趋势,到2024年,在生产规模持续扩张以及电池效率不断提升的情况下,动力电池成本有望降至每千瓦时100美元以下。 有知情人士透露,特斯拉的Roadrunner项目就是要实现这种新电池的批量生产,这种电池将更高效,也更便宜。这些电池正使用特斯拉内部团队开发的技术,包括杰夫·达恩(Jeff Dahn)领导、位于加拿大的研究实验室的技术成果,以及最近通过收购Maxwell获得的新技术。 Maxwell的干电极技术将使特斯拉能够生产更便宜、能量密度更高的电池,使他们每辆车使用的电池更少,同时仍然可以实现更长的续航里程。特斯拉已经秘密测试了原型电池。该公司相信可以批量生产这种电池,将其用于其车辆,并最终用于其固定储能产品。 在过去的几个月里,特斯拉在秘密开发电池制造设备,比如弗里蒙特的试点生产线。特斯拉的许多工程师在职业社交网站LinkedIn上的评论中,曾简短地提到了这种新电池。 特斯拉研发工程师马修·摩尔(Matthieu Moors)正邀请工程师加入这个团队,以“重塑”电池制造工艺。他写道:“快来加入我们,重塑锂离子电池制造技术!”电池制造高级经理邦妮·埃格尔斯顿(Bonne Eggleston)评论道:“开发世界一流的电池制造技术,使下一代低成本、高性能的电动汽车和储能产品成为可能。” 据消息人士称,随着新电池组的推出,特斯拉还在努力改进新的模块和电池组,包括摆脱对电池的引线焊接,转而采用激光焊接技术。 特斯拉自动驾驶业务总裁杰罗姆·吉伦(Jerome Guillen)在LinkedIn上表示,电池模块团队是“特斯拉技术的核心”。他写道:“我们还在继续招人,尤其是电池模块机械设计工程师。” 消息人士称,特斯拉首席执行官埃隆·马斯克(Elon Musk)正在推动一个新的电池组技术,里面有特斯拉新制造的电池,准备在4月份的“电池投资者日”(Battery Investor Day)时安装在Model S或Model X上。(小小)

    时间:2020-04-21 关键词: 电池 特斯拉 自制电池

  • 一加8 Pro续航能力如何?测测便知

    一加8 Pro续航能力如何?测测便知

    在这篇文章中,小编将为大家带来一加8 Pro的续航能力测评报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。 由于高素质120Hz QHD+屏幕、5G基带的加入,这次电池容量破例加到4500毫安的一加8Pro续航压力仍然较大,在测试之前小编预计此作续航可能会与过去前几代机型的续航相差无几。 虽然一加8 Pro提供选择可以调到60Hz、1080P的屏幕刷新率与分辨率提升续航,但是一加8 Pro的亮点之处就在于这块屏幕,用户也是冲着这点而来,所以接下来的续航测试小编全程开启QHD+分辨率与120Hz高刷新率。 小编使用哔哩哔哩客户端播放在线视频,70%亮度,20%音量,从100%电量开始,持续1小时24分钟,剩余电量87%,消耗电量13%。照这样的掉电速率。续航表现目前看来与前代的一加7 Pro相近,相比较小编之前所测试的电池容量相近,屏幕分辨率、刷新率更低的机型当然会弱一些。 以上便是小编此次带来的一加8 Pro续航能力相关测评,最后,小编诚心感谢大家的阅读。你们的每一次阅读,都是对小编莫大的鼓励。最后的最后,祝大家有个精彩的一天。

    时间:2020-04-18 关键词: pro 电池 续航 一加8

  • 电池管理系统提供保障

    电池管理系统提供保障

    大家知道什么是电池管理系统?有什么作用?人们对生存环境的持续关注促使了清洁型能源的发展,随着清洁能源在生活中的不断普及,电动汽车呈现了快速增长的趋势,并逐渐取代现在流行的燃油车,甚至出现了一些电动货车。 纯电动和混合动力汽车市场正在快速增长,由于特斯拉等电动汽车品牌的推动,纯电动汽车(EV)和混合电动汽车(PHEV)将成为未来汽车工业的重要部分。根据GVR(Grand View Research)公司的调研,受政府退税,补贴政策的影响,到2025年,全球电动汽车市场将达到460亿美元 最近,法国宣称从2040年开始法国将全面停止出售汽油车和柴油车,此前德国也提出到2030年禁售燃油车的计划。挪威是世界上最大的石油生产国之一,为了在2025年之前禁用燃油汽车,挪威政府降低了购买电动汽车的增值税。其次,政府提出了电动汽车不收取高速公路过路费,允许使用公交车专用车道,提供免费的充电桩等政策。 此外,印度宣布到2030年市场上只能销售电动车;英国宣布从2040年开始禁止销售新的汽油车和柴油车,至少已经有10个国家宣布了燃油车禁用计划。越来越多的电动汽车推出市场,但要想打破以燃油车为主的汽车市场,动力技术还需要不断提升。作为开发设计人员,开发一个可靠的,高效的,适应性强的电池管理系统(BMS)是其中的关键。 本文将深入研究电池管理系统中的一些电力电子元件,它们是保证动力系统稳定,安全的关键部件。 •电池管理系统(BMS)-- 电动汽车和混合动力汽车的关键技术•电池管理系统可以被认为是电池组的“大脑”,主要负责确保电池在安全状态下工作。锂电池是纯电动汽车和混合动力汽车的理想储能方案,它具有轻便、高能量密度、低自放电和记忆效应等性能。 •但锂电池方案也面临一些设计问题: 1.锂电池放电产生的过热问题 2.低于容量的5%会产生容量衰减 •电池管理系统可以被认为是电池组的“大脑”,主要负责保护电池不在安全状态下工作。电动汽车的主要电能储存技术是锂离子电池。轻便、高能量密度、低自放电和记忆效应已经将该技术用于EV、PHEV的理想解决方案。然而它们面对的一个关键设计问题。 •电池类似于小型炸弹,为确保其使用者的安全和可靠,电池需要严格管理。电池的充电和放电是通过无法检测的化学反应完成的,在这个过程中,热量起着根本性的作用;众所周知,当热量增加时,导体电阻增加,反之电阻降低。 •电就像水一样,当密封起来时,它是静静的,不流动的;一旦出现一个通路,它会流过阻碍最少的路径。 •同样用水作类比,把电池的单元看作是给城市供水管网供水的蓄水池。在每个蓄水池进出口位置的调节阀用来调节水压,保证低压时可以给所有的蓄水池供水,高压时不能涨破水管。 •为了调节电池单元的能量流动,电池管理系统中,每个电池单元配有两个场效应管,分别用来做充电和放电控制开关,根据电池的荷电状态、电压和温度条件选择充电或放电。电池管理系统通过脉冲,打开和关闭这些场效应管。因此需要高隔离变压器将控制电路电源部分隔离。Pulse的ph9185.xxxnl系列具有高的绝缘特性,可以有效进行控制电路与电源部分的隔离。 •EV、PHEV汽车中电池管理系统的三种方法 •1.电压 电池管理系统是负责监测每个电池的电压状态,避免电池出现过压或欠压,造成电池出现引起热击穿失效。因此保持电池单元电压的一致性是至关重要的,电池管理系统采用均衡充电技术调整不一致的电池单元。为了实现均衡充电,BMS系统采用传感器检测每一个电池单元的电压的升降,通过采集得的电压信号判断电池电压是否在标准范围内。普思电子的PA4334系列电感,可以完成电压的采集工作。 •2.温度 电池管理系统也负责测量电池组的温度。如果检测到过热情况,BMS系统会通过停止恢复性充电或减少电池包的放电的方式将单个电池单元的温度控制在安全的操作范围。 •3.荷电状态(SoC) 电池管理系统的另一个重要的能量管理功能是确定电池的荷电状态(SOC),确保所有电池都均匀放电,并防止放电低于阈值电压,导致永久性的降低它们的容量。电池管理系统通过通讯方式接收每个电池单元剩余的电量,进行库伦计算。为保证数据的及时和准确传输,保证通讯系统的安全性和抗干扰性能电子器件是十分重要的。Pulse的HMU2102NL实现了通讯系统的安全隔离信号的抗干扰,它通过菊花链架构可以支持多组串联,实现同时监测上百个电池单元。 •锂电池储能是通过电解液,持续的将从阳极置换出的锂离子移动到阴极完成的。理想充电方式是恒流恒压充电,在充电过程中需要使用高电流电感器限制电流变化率和消除对充电电流纹波。Pulse的PA434XNL系列可实现这个功能。 •一个好的电池管理系统的价值 总的来说,电池管理系统是确保电能存储系统安全高效地运行。对EV、PHEV产业最重要的问题是证明电动汽车越来越好。 一般来说,汽车是很复杂的,有些司机并不真正了燃油汽车的工作状态。但大多司机可以轻松的了解电动汽车和插电式混合动力车的工作状态。这归功于电气工程师和设计师们通过创新力的磁性元件,有效地评估和控制每一个电池的性能和健康状况,并将这些数据整合成一个强大的电池管理系统,使电能存储系统更安全、更耐用。以上就是电池管理系统的保障解析,希望能给大家帮助。

    时间:2020-04-05 关键词: 电池 新能源汽车 管理系统

  • 储能电池的优缺点分析

    储能电池的优缺点分析

    电池储能有什么优缺点呢?储能主要是指电能的储存。储能又是石油油藏里的一个名词,代表储层储存油气的能力。储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。 到目前为止,中国没有达到类似美国、日本将储能当作一个独立产业加以看待并出台专门扶持政策的程度,尤其在缺乏为储能付费机制的前提下,储能产业的商业化模式尚未成形。电池储能大功率场合一般采用铅酸蓄电池,主要用于应急电源、电瓶车、电厂富余能量的储存。小功率场合也可以采用可反复充电的干电池:如镍氢电池,锂离子电池等。本文跟随小编一起来了解一下九种电池储能的优缺点。 电池储能的优缺点(九种储能电池解析) 一、铅酸电池 主要优点: 1、原料易得,价格相对低廉; 2、高倍率放电性能良好; 3、温度性能良好,可在-40~+60℃的环境下工作; 4、适合于浮充电使用,使用寿命长,无记忆效应; 5、废旧电池容易回收,有利于保护环境。 主要缺点: 1、比能量低,一般30~40Wh/kg; 2、使用寿命不及Cd/Ni电池; 3、制造过程容易污染环境,必须配备三废处理设备。 二、镍氢电池 主要优点: 1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L; 2、功率密度高,可大电流充放电; 3、低温放电特性好; 4、循环寿命(提高到1000次); 5、环保无污染; 6、技术比较锂离子电池成熟。 主要缺点: 1、正常工作温度范围-15~40℃,高温性能较差; 2、工作电压低,工作电压范围1.0~1.4V; 3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。 三、锂离子电池 主要优点: 1、比能量高; 2、电压平台高; 3、循环性能好; 4、无记忆效应; 5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。 四、超级电容 主要优点: 1、功率密度高; 2、充电时间短。 主要缺点: 能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。 电池储能的优缺点(九种储能电池解析) 五、燃料电池 主要优点: 1、比能量高,汽车行驶里程长; 2、功率密度高,可大电流充放电; 3、环保,无污染。 主要缺点: 1、系统复杂,技术成熟度差; 2、氢气供应系统建设滞后; 3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。 六、钠硫电池 优势: 1、高比能量(理论760wh/kg;实际390wh/kg); 2、高功率(放电电流密度可达200~300mA/cm2); 3、充电速度快(充满30min); 4、长寿命(15年;或2500~4500次); 5、无污染,可回收(Na,S回收率近100%);6、无自放电现象,能量转化率高; 不足: 1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢; 2、价格昂贵,万元/每度; 3、安全性差。 七、液流电池(钒电池) 优点: 1、安全、可深度放电; 2、规模大,储罐尺寸不限; 3、有很大的充放电速率; 4、寿命长,高可靠性; 5、无排放,噪音小; 6、充放电切换快,只需0.02秒; 7、选址不受地域限制。 缺点: 1、正极、负极电解液交叉污染; 2、有的要用价贵的离子交换膜; 3、两份溶液体积大,比能量低; 4、能量转换效率不高。 八、锂空气电池 致命缺陷: 固体反应生成物氧化锂(Li2O)会在正极堆积,使电解液与空气的接触被阻断,从而导致放电停止。科学家认为,锂空气电池的性能是锂离子电池的10倍,可以提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。全球不少实验室都在研究这种技术,但如果没有重大突破,要想实现商用可能还需要10年。 九、锂硫电池(锂硫电池是一类极具发展前景的高容量储能体系) 优点: 1、能量密度高,理论能量密度可达2600Wh/kg; 2、原材料成本低; 3、能源消耗少; 4、低毒。 虽然锂硫电池研究已经经历了几十年,并且在近10年时间取得了许多成果,但离实际应用还有不小距离。以上就是电池储能的优缺点,希望能给大家参考。

    时间:2020-04-05 关键词: 新能源 电池 储能

  • 直接甲醇燃料电池分析

    直接甲醇燃料电池分析

    什么是直接甲醇燃料电池?本文主要讲了有关直接甲醇燃料电池的内容,包括:直接甲醇燃料电池的工作原理,直接甲醇燃料电池的优缺点,直接甲醇燃料电池影响性能的因素,直接甲醇燃料电池的国内研究现状,直接甲醇燃料电池面临的问题。 直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)属于质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)中的类,直接使用甲醇水溶液或蒸汽甲醇为燃料供给来源,而不需通过甲醇、汽油及天然气的重整制氢以供发电。相较于质子交换膜燃料电池(PEMFC) ,直接甲醇燃料电池 (DMFC) 具备低温快速启动、燃料洁净环保以及电池结构简单等特性。这使得直接甲醇燃料电池 (DMFC)可能成为未来便携式电子产品应用的主流。 一·、直接甲醇燃料电池的工作原理 直接甲醇燃料电池是质子交换膜燃料电池的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换成二氧化碳,质子(氢核或氢离子)和电子,如同标准的质子交换膜燃料电池一样,质子透过质子交换膜迁移往并在阴极与氧反应,而电子则通过外电路的负载到达阳极,并做功。 碱性条件 在负极: 2 CH3OH + 16 (OH-) - 12 (e–) → 2(CO32-)+ 12 (H2O) 在正极: 3 O2+ 12 (e–) + 6 (H2O) → 12 (OH- ) 总反应式:2 CH3OH + 3O2+ 4(OH-)= 2 (CO32-)+ 6 H2O 酸性条件 在负极:2 (CH3OH) - 12 (e–) + 2 H2O → 12 H+ + 2 CO2 在正极:3 O2 + 12 (e-) + 12 H+ → 6 H2O 总反应式: 2 CH3OH + 3 O2 = 4 H2O + 2 CO2 这种电池的期望工作温度为120摄氏度以下,比标准的质子交换膜燃料电池的运行操作温度略高,其效率大约是40%左右。 直接甲醇燃料电池是质子交换膜燃料电池的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换成二氧化碳和氢离子,如同标准的质子交换膜燃料电池一样,氢然后再与氧反应。 二、直接甲醇燃料电池的优缺点 优点 直接甲醇燃料电池具有能量转化效率高,可靠性强,质能比高,清洁,易启动,无噪音,低辐射,隐蔽性强,模块化结构,灵活方便,可水、电、热联供等优点。 缺点 缺点是当甲醇低温转换为氢和二氧化碳时要比常规的质子交换膜燃料电池需要更多的白金催化剂。不过,这种增加的成本可以方便地使用液体燃料,无需进行重整便能工作而相形见绌。直接甲醇燃料电池使用的技术仍处于其发展的早期,但已成功地显示出可以用作移动电话和膝上型电脑的电源,将来还具有为指定的终端用户使用的潜力。 三、直接甲醇燃料电池影响性能的因素 1、阳极催化甲醇的电催化剂,一般来说阳极催化起始在0.4V左右,商业化使用的是PtRu/C催化剂,约存在0.2~0.4V的过电位,特别是在高电流情况下,过电位更高。 2、阴极氧还原催化剂,使用的Pt/C催化剂,起始电位约在0.9V左右,存在0.3~0.6V过电位。催化活性还有很大程度的提高。 3、膜是质子交换膜,其质子交换能力也会影响效率,此外,甲醇的透过性也会影响催化,(甲醇透过膜到阴极后,会产生混合电势影响效率)。 四、直接甲醇燃料电池的国内研究现状 我国在直接甲醇燃料电池研究方面起步较晚。中国科学院大连化学物理研究所推出了应用于小型风扇、PDA、玩具车以及手机用直接甲醇燃料电池实验演示原型。该所还采用物理气相沉积法在硅片表面沉积金属复合层作为集流体,有效降低了MEMS微型燃料电池的内阻。清华大学微电子研究所对以多孔硅为基础的MEMS微型燃料电池进行了深入研究。中国科学院上海微系统与信息技术研究所对微型燃料电池的电池结构、封装、系统集成等方面的研究也取得了较好的进展。 五、直接甲醇燃料电池面临的问题 直接甲醇燃料电池虽然最有可能补充和替代目前广泛使用的蓄电池,但是也存在着许多问题:1)技术上,催化剂的低活性和甲醇的渗透2个关键技术问题阻碍着微型直接甲醇燃料电池的发展和应用,特别是低温条件下的甲醇阳极催化剂性能亟待提高; 2)制造上,直接甲醇燃料电池的发展趋势是微型化、集成化和高能化,但是,由于目前燃料电池还未产业化,各种电池零部件的加工有时还达不到设计精度的要求,甚至无法规模加工。同时,电池的微型化、集成化势必引起比能量的下降,这与提高电池比功率密度相矛盾。 3)成本上,直接甲醇燃料电池所需的催化剂、电解质膜、极板等材料价格昂贵,制备和加工成本高。因此,要使直接甲醇燃料电池商业化并具有竞争力,就必须把电池生产成本降低到目前使用的蓄电池价格上甚至更低。以上就是直接甲醇燃料电池的解析,希望能给大家帮助。

    时间:2020-04-05 关键词: 电池 燃料 直接甲醇

  • 电动汽车动力电池组成有哪些?

    电动汽车动力电池组成有哪些?

    电动汽车大家都知道,那么知道电动汽车动力电池吗本文主要讲了有关电动汽车动力电池的简介、功能、组成以及基本的分类等内容,下面就随小编来看看吧。 一、电动汽车电池简介 电动汽车电池分两大类,蓄电池和燃料电池。蓄电池适用于纯电动汽车,包括铅酸蓄电池、镍基电池、钠硫电池、二次锂电池、空气电池。燃料电池专用于燃料电池电动汽车,包括碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC )、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC )、直接甲醇燃料电池(DMFC )。 二、电动汽车电池功能 随着电动汽车的种类不同而略有差异。在仅装备蓄电池的纯电动汽车中,蓄电池的作用是汽车驱动系统的惟一动力源。而在装备传统发动机(或燃料电池)与蓄电池的混合动力汽车中,蓄电池既可扮演汽车驱动系统主要动力源的角色,也可充当辅助动力源的角色。可见在低速和启动时,蓄电池扮演的是汽车驱动系统主要动力源的角色;在全负荷加速时,充当的是辅助动力源的角色;在正常行驶或减速、制动时充当的是储存能量的角色。 三、电动汽车电池组成 燃料电池由阳极、阴极、电解质和隔膜构成。燃料在阳极氧化,氧化剂在阴极还原。如果在阳极(即外电路的负极,也可称燃料极)上连续供给气态燃料(氢气),而在阴极(即外电路的正极,也可称空气极)上连续供给氧气(或空气),就可以在电极上连续发生电化学反应,并产生电流。由此可见,燃料电池与常规电池不同,它的燃料和氧化剂不是储存在电池内,而是储存在电池外部的储罐中。当它工作(输出电流并做功)时,需要不间断地向电池内输人燃料和氧化剂并同时排出反应产物。因此,从工作方式上看,它类似于常规的汽油或柴油发电机。由于燃料电池工作时要连续不断地向电池内送入燃料和氧化剂,所以燃料电池使用的燃料和氧化剂均为流体(气体或液体)。最常用的燃料为纯氢、各种富含氢的气体(如重整气)和某些液体(如甲醇水溶液),常用的氧化剂为纯氧、净化空气等气体和某些液体(如过氧化氢和硝酸的水溶液等)。 燃料电池阳极的作用是为燃料和电解液提供公共界面,并对燃料的氧化产生催化作用,同时把反应中产生的电子传输到外电路或者先传输到集流板后再向外电路传输。阴极(氧电极)的作用是为氧和电解液提供公共界面,对氧的还原产生催化作用,从外电路向氧电极的反应部位传输电子。由于电极上发生的反应大多为多相界面反应,为提高反应速率,电极一般采用多孔材料并涂有电催化剂。 电解质的作用是输送燃料电极和氧电极在电极反应中所产生的离子,并能阻止电极间直接传递电子。隔膜的作用是传导离子、阻止电子在电极间直接传递和分隔氧化剂与还原剂。因此隔膜必须是抗电解质腐蚀和绝缘的物质,并具有良好耐润湿性。 四、电池组 电动汽车电池组由多个电池串联叠置组成。一个典型的电池组大约有96个电池,充电到4.2V的锂离子电池而言,这样的电池组可产生超过400V的总电压。尽管汽车电源系统将电池组看作单个高压电池,每次都对整个电池组进行充电和放电,但电池控制系统必须独立考虑每个电池的情况。如果电池组中的一个电池容量稍微低于其他电池,那么经过多个充电/放电周期后,其充电状态将逐渐偏离其它电池。如果这个电池的充电状态没有周期性地与其它电池平衡,那么它最终将进入深度放电状态,从而导致损坏,并最终形成电池组故障。为防止这种情况发生,每个电池的电压都必须监视,以确定充电状态。此外,必须有一个装置让电池单独充电或放电,以平衡这些电池的充电状态。 电池组监视系统的一个重要考虑因素是通信接口。就PC板内的通信而言,常用的选项包括串行外设接口(SPI)总线、I2C总线,每种总线的通信开销都很低,适用于低干扰环境。另一个选项是控制器局域网(CAN)总线,这种总线在汽车应用中被广泛使用。CAN总线非常鲁棒,具有误差检测和故障容限特性,但是它的通信开销很大,材料成本也很高。尽管从电池系统到汽车主CAN总线的连接是值得要的,但在电池组内采用SPI或I2C通信是有优势的。 私人购买新能源汽车补贴标准出台后,部分试点城市的“再补贴”政策也随即出台,新能源汽车消费正逐步启动。面对广阔的市场前景,国家电网、南方电网、中海油、中石化等巨头纷纷跑马圈地,各地掀起一股兴建充电站的风潮。 截至目前,上海漕溪、深圳龙岗、成都石羊、唐山南湖、延安、郑州、南宁等地已经建成、在建或近期将开建大量的充电站,其中上海计划在三年内达到5000个充电桩的规模;长春计划三年内建成15个充电站和5000个充电桩……电池尺寸、充电接口是否统一?电池质量能否过关?快速充电对电池的损害究竟有多大?等一系列问题开始暴露出来。 五、电动汽车电池基本分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a. 碱性电池。即电解液为碱性水溶液的电池; b. 酸性电池。即电解液为酸性水溶液的电池; c. 中性电池。即电解液为中性水溶液的电池; d. 有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a. 活性物质保存在电极上。可分为一次电池(非再生式,原电池)和二次电池(再生式,蓄电池); b. 活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。 按电池的某些特点分为: a. 高容量电池; b. 免维护电池; c. 密封电池; d. 燃结式电池; e. 防爆电池; f. 扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: 一次电池 一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O 二次电池 二次电池,又称“蓄电池”, 即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如: 铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) 贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如: 镁银电池 Mg│MgCl2│AgCl 钙热电池 Ca│LiCl-KCl│CaCrO4(Ni) 铅高氯酸电池 Pb│HclO4│PbO2 燃料电池 燃料电池,又称“连续电池”,即只要活性物质连续地注入电池,就能长期不断地进行放电的一类电池。它的特点是电池自身只是一个载体,可以把燃料电池看成一种需要电能时将反应物从外部送入电池的一种电池。如: 氢燃料电池 H2│KOH│O2 肼空燃料电池 N2H4│KOH│O2(空气) 必须指出,上述分类方法并不意味着某一种电池体系只能分属一次电池、二次电池、贮备电池或燃料电池。恰相反,某一种电池体系可以根据需要设计成不同类型的电池。如锌银电池,可以设计成一次电池,也可以设计成二次电池,或贮备电池。以上就是电动汽车动力电池的相关解析,希望能给大家帮助。

    时间:2020-04-05 关键词: 动力 电池 电动汽车

  • 电池寿命缩短的可能性因素

    电池寿命缩短的可能性因素

    电池大家都知道,那么你知道电池寿命缩短的可能性因素吗?前段时间据外媒报道,德国贝伦贝格银行(Berenberg Bank)的Asad Farid表示,许多电动车电池的使用寿命低于消费者预期,特别是富镍电池及电池快充技术逐步成为业内发展趋势后,这一点表现得更为明显。新一代的电动车电池使用寿命通常只有短短五年(平均寿命),电池降解速率将持续上升。 此言一出,举座哗然,与许多人的预期截然相反,他(她)们以为未来电池的性能可堪比特斯拉主动冷却式锂离子蓄电池组。他表示,未来的电池会出现一定程度上的“容量衰减(capacityfade)”。由于衰减速度加快了20%,导致其平均使用寿命只有5-6年。 Farid指出未来电池使用寿命缩短的几点原因: 首先,锂镍锰钴氧化物(lithium nickel manganese cobalt oxide,NMC)和锂镍钴铝氧化物(NCA)电池的电芯的镍含量将走高,这已成为未来的一大趋势。然而,镍成分的提升会导致NMC电池和NCA电池的充放电次数(使用寿命)被分别降至2000次和1000次。相较之下,中国用户使用的磷酸锂铁(lithium iron phosphate)电池通常能实现充放电3000多次。Farid指出,由于近年来提升电动车续航里程数的需求愈发强烈,业内逐步转向富镍化学电池转型。然而,不幸的是,提升能量密度(续航里程)却是以牺牲使用寿命为代价的。 其次,电动车快充技术也将缩短电池的使用寿命。如今,许多地方安装了50kW、150kW乃至350kW的直流快速充电站,充电时间可缩短至20分钟,但充电过程中的热量会导致电池阳极与阴极发生分解反应(decomposition)。当充电速度提升三倍时,电池的降解速度也将随之提升。 最后,风冷设备的使用将导致电池降解速率加快。如今,许多车企采用被动式风冷系统取代液冷系统,但该类系统会导致电池内部发热,风冷导致的降解速度是动态液冷电池的两倍。 如今,业内也认识到快充技术相关的电池发热及降解问题,其力图采用热管理方案来缓解快充技术所带在的电池发热问题。奥迪就为其新款e-tron车型配备了蓄电池热管理方案,以便支持150-kW快充技术,而保时捷则计划为Taycan推出350-kW快充技术。 Farid认为,大多数消费者期望在8年后才更换其车载电池。显然,换电池比换车划算得多。未来,许多电动车车主或许要每隔4-5年换一次电池,但如果购买的是日产、宝马或雷诺的电动车,其电池更换成本在8000美元左右。若车主不愿更换电池,将在五年内损失车辆转售价值的70%。届时,电池是电动车唯一一个故障部件,若只更换电池,可以节省很多钱。以上就是电池寿命缩短的可能性因素,希望能给大家帮助。

    时间:2020-04-05 关键词: 充电站 电池 电动车电池

  • 电动车电瓶辨别方法

    电动车电瓶辨别方法

    大家都知道电动车,那么你知道如何分辨电瓶的原装与否吗?本文主要是关于电动车电瓶的相关介绍,并着重对电动车电瓶的原装判断及修复进行了详尽的阐述。 电动车电瓶 电动车电池是电动车上的动力来源,现在的电动车上绝大多数装的是铅酸蓄电池,铅酸蓄电池成本低,性价比高。因为这种电池能充电,可以反复使用,所以称它为“铅酸蓄电池”。1860年,法国的普朗泰发明出用铅做电极的电池,这是铅酸蓄电池的前身。能够被电动自行车采用的有以下四种动力蓄电池,即阀控铅酸免维护蓄电池、胶体铅酸蓄电池、镍氢蓄电池和锂离子电池。 1铅酸蓄电池 铅蓄电池因其价格便宜、材料来源丰富、比功率较高、技术和制造工艺较成熟、资源回收率高等综合因素被各国各种电动车普遍采用和广泛研究。电动自行车作为省力、方便、快速、舒适、价廉、零排放的个人交通工具已被人们广泛接受,并受到国家有关部门的重视。由国务院发展研究中心、国家发改委、建设部、科技部等部委参与的《轻型电动车产业发展战略研究》课题组提出了“轻型电动车产业发展战略研究”报告。电动自行车的全国保有量已达3000万辆以上。95%以上的电动自行车都用阀控铅蓄电池。 [1] 已商品化的电动自行车的绝大多数是使用的密封式铅酸蓄电池,使用中不需要经常补充水分,免维护。其主要化学反应是:PbO2+2H2SO4+Pb←充电、放电→ 2PbSO4+2H2O 铅酸蓄电池充电时变成硫酸铅的阴阳两极的海绵状铅把固定在其中的硫酸成分释放到电解液中,分别变成海绵状铅和氧化铅,电解液中的硫酸浓度不断变大;反之放电时阳极中的氧化铅和阴极板上的海绵状铅与电解液中的硫酸发生反应变成硫酸铅,而电解液中的硫酸浓度不断降低。当铅酸蓄电池充电不足时,阴阳两极板的硫酸铅不能完全转化变成海绵状铅和氧化铅,如果长期充电不足,则会造成硫酸铅结晶,使极板硫化,电池品质变劣;反之如果电池过度充电,阳极产生的氧气量大于阴极的吸附能力,使得蓄电池内压增大,导致气体外溢,电解液减少,还可能导致活性物质软化或脱落,电池寿命大大缩短。 综合性能有很大提高 近10年来,电动自行车用阀控铅蓄电池的综合性能有很大提高。以6-DZM-10电池为例。1997年,该型电池存在容量不足,2h率(5A)放电容量达不到10Ah;比能量低,2h率的比能量不到30Wh/kg;寿命短,100%放电深度的循环寿命只有50~60次(容量降到8Ah前;以下同),使用寿命只有3~5个月等问题。到2003年,2h率(5A)放电容量达到11~13Ah;2h率比能量达到33~36Wh/kg;100%放电深度的循环寿命达到250~300次,使用寿命可达到12个月以上。电动自行车用阀控铅酸蓄电池存在的问题基本得到解决。 该类型电池的深循环寿命性能又有新的、突破性进展。主要表现为:2h率(5A)放电初始容量达到14Ah;2h率比能量达到38Wh/kg;100%放电深度的循环寿命超过400次,放出总容量为4500Ah,相应累计行驶里程约18000km(以4km/Ah计,以下同)。最高的深循环寿命超过600次,放出总容量为6151Ah,相应累计行驶里程约24600km。如果以容量低于7Ah为寿命终止标志,深循环寿命为943次循环,放出总容量为8710Ah,相应累计行驶里程约34800km。如果按深循环寿命250次或放出的总容量为2250Ah、相应累计行驶里程为9000km的电池组可保证使用1年。 [1] 重视与充电器的匹配 在多年的使用实践中,电动自行车的整车厂家和蓄电池厂家都逐渐认识了蓄电池与电驱动系统相关设备之间匹配的重要性,特别是与充电器的匹配。制造质量是蓄电池质量的前提,但只有在与其相匹配的充电器一起使用才能发挥高质量蓄电池应有的优越性能,否则高质量蓄电池不能完全发挥其潜在的优越性能。 [1] 不同厂家的蓄电池由于在配方、结构、酸浓度等方面的差别,其合适的充电参数是不同的。例如,我们在研究中发现,不同厂家的蓄电池在恒压阶段的充电参数可相差1.5~2.0V(对36V的电池组)。合适的充电参数基本要求是:确保电池可充满,不会因欠充电造成电池容量不正常的衰减;又要确保电池在全寿命期间不会因过充电而造成电池严重失水和产生热失控。 [1] 2纯电动车用铅蓄电池 早期纯电动车用的开口式铅蓄电池采用了“八·五”规划期间的研究成果,已取得了可用19个月(12万公里)的成功经验,关键是积累了控制好充电方式、放电深度、及时补水等一套系统匹配的工作经验和精心维护的经验。近年来四轮微型电动车(包括游览车、巡逻车、高尔夫球车、短距离道路车等)发展很快,车上采用的大多是开口式铅蓄电池。相应型号的电池受到蓄电池制造厂家的青睐。 [1] 电动车采用的是阀控式密封铅蓄电池新产品,其性能为:3h率容量55Ah;3h率下比能量为33Wh/kg和84Wh/L;75%放电深度的循环寿命达到400次以上。相信电动自行车用的阀控铅蓄电池成功的经验可推广到纯电动车用阀控铅蓄电池,性能将会有进一步的提高。 [1] 3混合电动车用铅蓄电池 现在混合电动车基本分为3类:轻度混合型(即电动系统主要用于起动和回收制动能量,即将在所有汽车上推广的42V电系统属于此型)、中度混合型(即电动系统用于起动、回收制动能量和中、短距离的行驶)、重度混合型(即电动系统用于起动、回收制动能量和较长距离的行驶,也称为“Plug-in”)。 [1] 在国内外文献中已明确:在轻度混合的电动汽车中,阀控铅蓄电池是有优势的,主要因其成本低,技术成熟,性能可靠;中度混合的电动汽车用的阀控铅蓄电池,ALABC(先进铅酸蓄电池联合体)正在组织研制,准备与MH-Ni蓄电池争夺中度混合电动汽车的市场,现已推出并进行了车上试验的卷绕式双极耳电池和TMF(金属薄膜)电池;在重度混合的电动汽车领域,铅蓄电池的比能量低,无法满足电动系统较长距离的行驶要求。 [1] 4胶体蓄电池 是对液态电解质的普通铅酸蓄电池的改进。它采用凝胶状电解质,内部无游离的液体存在, 在同等体积下电解质容量大,热容量大,热消散能力强,能避免一般蓄电池易产生的热失控现象;电解质浓度低,对极板腐蚀弱;浓度均匀,不存在酸分层的现象。 5镍氢蓄电池 (Ni-MH) 镍氢蓄电池是九十年代涌现出的电池家族中新秀,发展迅猛。Ni-MH电池的电极反应为: 正极:Ni(OH)2+OH-= NiOOH+H2O+e- 负极:M+H2O+e=MHab+OH-Ni(OH)2+M=NiOOH+MHab 它和镍镉蓄电池同属碱性蓄电池,只是以吸藏氢气的合金材料(mh)取代镍镉蓄电池中的负极材料镉cd、电动势仍为1.32v。它具备镍镉蓄电池的所有优异特性,而且能量密度还高于镍镉蓄电池。主要优点是:比能量高(一次充电可行使的距离长);比功率高,在大电流工作时也能平稳放电(加速爬坡能力好);低温放电性能好;循环寿命长;安全可靠,免维护;无记忆效应;对环境不存在任何污染问题,可再生利用,符合持续发展的理念。但是,Ni-MH蓄电池成本太高,价格昂贵。 6锂离子电池 锂离子电池是1990年由日本索尼公司首先推向市场的新型高能蓄电池。其优点是比能量高,是当前比能量最高的蓄电池。已经在便携式信息产品中获得推广应用。 锂离子电池被普遍认为具有如下的优点:比能量大;比功率高;自放电小; 无记忆效应;循环特性好;可快速放电,且效率高;工作温度范围宽;无环境污染等,因此有望进入21世纪最好的动力电源行列。预计在2006~2012 年期间,当锂离子电池进一步发展时,MH/Ni蓄电池的市场份额将缩小。锂离子市场份额将会扩大。已经有采用锂离子蓄电池的电动自行车产品出售。 在安全性好、循环性能好、比容量高的新型价廉正极材料发展的推动下,电动自行车用的锂离子蓄电池已接近实用。有几家已可提供较成熟的、装有电池管理系统(BMS)的电动自行车用锂离子蓄电池。也有专门生产用锂离子蓄电池的电动自行车厂家。笔者认为电动自行车用的锂离子蓄电池将是首先商业化、大批量在车上使用的动力型电池;它将是继铅蓄电池之后所占比例较大的实用化电池,也将成为用于高端电动自行车产品的电池。关于大型锂离子蓄电池在纯电动轿车和电动巴士,以及在混合电动车上试用,展览示范的已有不少报道。根据现在的锂离子蓄电池发展水平和经验,认为电动自行车用48V10Ah以下电池组的安全性是有保障的,但大型锂离子蓄电池要在商业化电动车辆上使用还要做许多艰苦的工作,其原因主要是:纯电动轿车和电动巴士,以及混合电动车上使用的电池数量多、系统复杂,安全性难度更大,对可靠性和一致性的要求更高,价格太高等。曾经报道过深圳比亚迪要在2005年提供200辆以锂离子蓄电池为动力源的电动轿车组成出租车队之事,现在已推迟到2007年了。 [1] 7燃料电池 燃料电池将化学能直接转换成电能供给电动机来驱动车辆。它的主要优点是:效率高,可节省燃料;零排放;噪音小等,特别适合于做车辆动力源。氢燃料电池车将是理想的、最终取代以石油产品为燃料的汽车。 [1] 8锌-镍蓄电池(Zn-Ni) Zn-Ni蓄电池曾被认为是应提倡的电动车用蓄电池。从4~5年的市场筛选来看,在商业化的电动车上几乎没有使用。这主要是由于Zn-Ni蓄电池的价格贵(每VAh要2.5~4元,为铅蓄电池的4~6倍);循环过程中,初期容量衰减率大,影响了蓄电池组实际可使用的寿命。另外,锂离子蓄电池的迅速发展和价格降低,使Zn-Ni蓄电池在电动车上应用更加缺乏竞争力。 [1] 9锌空气电池 锌空电池是金属-空气电池的一种,属于半燃料电池范畴。它有比能量高、原材料丰富、价格不高、无污染等优点,被认为是电动车用电池的有竞争力的候选者。 美籍华人曾在上海成立了生产机械可充锌空电池的博信(PowerZinc),并已建成示范车间。该制造的电动自行车和电动摩托车用锌空电池装车进行了行驶里程测试,分别达到150km和250km,并做了大量的推广应用工作,在上海市建立了50个电池更换点。但是不到1年,此推广试用工作就停止了,市场筛选的结果是没有被用户接受。此后在有些领导支持下,做了一辆用该制造的锌空电池为动力源的电动巴士,但受锌空电池高功率性能差的限制,车的启动和加速性能明显较差。国内外在开发电动车用锌空电池方面已经做了许多工作。近年来国内电动车用锌空电池的研制工作又重新兴起,但是实践证实了锌空电池原来应有的优越性,同时也暴露了一些国外已报道过的问题,如锌电极更换服务系统和再生成本,氧电极的寿命,电池的电解液渗漏、爬漏或溢出等。 怎样辩别电动车电瓶是原装的? 看外观:全新电池外观平滑干净,翻新电池表面经过打磨,消除原来标记,重新上漆,重新打上标记和日期。仔细看,能看出原来电池上被打磨掉的标记和日期标签。 看接线端子:翻新电池接线端子孔中有焊锡残留,就是打磨干净也能看出有打磨的痕迹,新电池有光亮。有的翻新电池给换了接线端子,但是正负极标记出涂有标记颜色漆不均匀,一看就有重新填充的迹象。 查防伪:新电池一般有防伪标识,有防伪查询的编码,进行查询,一般可以辨别。 扫描二维码:打开电池包装箱,里面有个合格证,箱子上有个刮涂扫描二维码的,你扫了之后填上你的手机号,就可以立刻验证电池的真伪了。 还有一种翻新,就是厂家的翻新电池,叫做维护电池,外观辨别和上面说的一样,只是上面一般有标识,像“周转”、“备用”、“维护”、“非卖品”、“WH”、“0000”等等,每个厂家都有每个厂家的标记,没有统一的标识,注意辨别。 换电池,不要贪图便宜,要找信誉好的正规店更换,只要注意辨别,不图便宜,一定会换到正品电池。 电动车电瓶修复方法 若电池外观没有损坏、鼓胀,无短路、断路迹象时,可以采取以下方法尝试给电池修复: 1、采用正负脉冲的方式给电池进行去极化充电,再完全放电,如此循环三次,若容量有恢复迹象,可以多循环几次,达到更好的修复效果。 2、加水修复,加水必须要加去离子水或纯净水,切勿加自来水,会造成电池自放电大的问题。 1、先将电池完全放电,因为放电后电池内部酸液密度基本为1.1g/mL以下; 2、将盖片取出,再将安全阀拿掉,注意保存好,不要搞脏了安全阀,以备后用; 3、加水,一般12AH的电池一单格加水量为8~10g,20AH的电池一单格加水量在15g左右; 4、静置一小时左右,将安全阀与盖片安装好; 5、进行充电,充满电后再进行完全放电,如此循环个三次,容量会有所好展。 铅酸电池在长期不用时应做到: 1、搁置前必须将电池充满电,并在满电的前提下一般建议在2~3个月必须给电池补充电,有条件的话最好1~2个月充电一次。 2、电动车在不用时,需存放在通风阴凉的室内,电池组充满电后把负载线断开,由于铅酸电池本身的自放电会造成硫酸盐化,若长时间不补充电会造成容量恢复困难至使影响寿命,所以一般建议在2~3个月必须给电池补充电,以利于电池寿命。以上就是电动车的电瓶的原装与否的辨别方法,希望能给大家帮助。

    时间:2020-04-05 关键词: 电池 电瓶 电动车

  • 电源管理技术以及电池使用寿命

    电源管理技术以及电池使用寿命

    随着手机的功能越来越多,用户对手机电池的能量需求也越来越高,现有的锂离子电池已经越来越难以满足消费者对正常使用时间的要求。那么应该如何提高电源管理技术以及如何延长电池的使用售卖呢?对此,业界主要采取两种方法,一是开发具备更高能量密度的新型电池技术,如燃料电池;二是在电池的能量转换效率和节能方面下功夫。 为手机提供电能的技术在最近几年虽有不少创新和发展,但是还远远不能满足手机功能发展的需要,因此如何提高电源管理技术并延长电池使用寿命,已经成为手机开发设计中的主要挑战之一。 同时,设计者还必须明白消费者对手机的要求,这主要体现在以下几个方面:第一,体积小。这要求提高系统的集成度,缩小元器件的封装体积,减小PCB板的面积,这可能会增加设计中解决电磁干扰(EMI)的难度。第二,重量轻。要求使用高效能的电池,在有限的体积和重量下,提高电池的能量密度。目前大部分手机都使用单节锂离子或锂聚合物的电池,容量为850-1000mAH。第三,通话时间长。要求提高工作时对电池中电能的转换效率,减少待机时的漏电电流,提高使用效率。第四,价格便宜。要求产品的方案集成度高,分立器件少而且成本低廉。第五,产品更新快。要求元器件简单易用、便于设计使用,硬件软件平台统一,便于增加新的功能和特色。 因此,手机的电源管理要在进行手机系统方案设计时综合考虑,平衡省电、成本、体积和开发时间等多种因素,进行最佳选择。总的来讲,可以从提高电能的转化效率和提高电能的使用效率两方面着手进行手机的整体电源管理。 一、提高电能的转化效率 随着对电源管理要求的不断提高,手持设备中的电源变换从以往的线性电源逐渐走向开关式电源。但并非开关电源可以代替一切,二者有各自的优势和劣势,适用于不同的场合。 线性电源 LDO具有成本低、封装小、外围器件少和噪音小的特点。在输出电流较小时,LDO的成本只有开关电源的几分之一。LDO的封装从SOT23到SC70、QFN,直至WCSP晶圆级芯片封装,非常适合在手持设备中使用。对于固定电压输出的使用场合,外围只需2到3个很小的电容即可构成整个方案。 超低的输出电压噪声是LDO最大的优势。但LDO的缺点是低效率,且只能用于降压的场合。LDO的效率取决于输出电压与输入电压之比:η=Vout/Vin。在输入电压为3.6V(单节锂电池)的情况下,输出电压为3V时,效率为90.9%,而在输出电压为1.5V时,效率则下降为41.7%。这样低的效率在输出电流较大时,不仅会浪费很多电能,而且会造成芯片发热影响系统稳定性。 开关式电源 电感式开关电源是利用电感作为主要的储能元件,为负载提供持续不断的电流。通过不同的拓扑结构,这种电源可以完成降压、升压和电压反转的功能。电感式开关电源具有非常高的转换效率。在产品工作时主要的电能损耗包括:内置或外置MOSFET的导通损耗,主要与占空比和MOSFET的导通电阻有关;动态损耗,包括高侧和低侧MOSFET同时导通时的开关损耗和驱动MOSFET开关电容的电能损耗,主要与输入电压和开关频率有关;静态损耗,主要与IC内部的漏电流有关。 在电流负载较大时,这些损耗都相对较小,所以电感式开关电源可以达到95%的效率。但是在负载较小时,这些损耗就会相对变得大起来,影响效率。这时一般通过两种方式降低导通损耗和动态损耗,一是PWM模式:开关频率不变,调节占空比。二是PFM模式:占空比相对固定,调节开关频率。电感式开关电源的缺点在于电源方案的整体面积较大(主要是电感和电容),输出电压的纹波较大。在PCB布板时必须格外小心以避免电磁干扰(EMI)。 为了减小对大电感和大电容的需要以及减小纹波,提高开关频率是非常有效的办法。 电容式开关电源 电荷泵是利用电容作为储能元件,其内部的开关管阵列控制着电容的充放电。为了减少由于开关造成的EMI和电压纹波,很多IC中采用双电荷泵的结构。电荷泵同样可以完成升压、降压和反转电压的功能。由于电荷泵内部机构的关系,当输出电压与出入电压成一定倍数关系时,比如2倍或1.5倍,最高的效率可达90%以上。但是效率会随着两者之间的比例关系而变化,有时效率也可低至70%以下。所以设计者应尽量利用电荷泵的最佳转换工作条件。 由于储能电容的限制,输出电压一般不超过输入电压的3倍,而输出电流不超过300mA。电荷泵特性介于LDO和电感式开关电源之间,具有较高的效率和相对简单的外围电路设计,EMI和纹波的特性居中,但是有输出电压和输出电流的限制。 二、提高电能的使用效率 在手机中,减少能量的浪费、将尽量多的可用电能用于实际需要的地方,是省电的关键。 手持设备电源系统一般结构 信号处理系统 信号处理系统主要是信号处理器是手机的核心部分,它如同人的心脏,会一直工作,因此它也是一个主要的手机电能消耗源。那么应如何提高它的效率呢?一般来说可采用以下两种方法。 方法1:分区管理。将处理某项任务时不需要的功能单元关掉,比如在进行内部计算时,将与外部通信的接口关断或使其进入睡眠状态。为了达到这一目的,手机中的信号处理器往往涉及很多个内部时钟,控制着不同功能单元的工作状态。另外,为不同功能块供电的电源电路是可以关断的。 方法2:改变信号处理器的工作频率和工作电压。目前绝大多数的信号处理器是用CMOS工艺制造的。在CMOS电路中,最大的一项功率损耗是驱动MOSFET栅极所引起的损耗。可以看出功率损耗与频率和输入电压,即IC的电源电压的平方成正比。所以针对不同的运算和任务,把频率和电源电压降低到合适的值,可以有效地减少功率损耗。 DVS(动态电压调整)技术有效地将处理器与电源转换器连接成闭环系统,通过I2C等总线动态地调节供电电压,同时调节自身的频率。TPS65010集成了充电电路、电感式DCDC和LDO。同时还可以通过I2C总线对各路输出电压进行调节,非常适合为OMAP和类似的处理器供电。 音频功率放大部分 音频功率放大器是手机中又一能量消耗大户,输出功率可达750mW,对于带有免提功能的手机可达2W。如何提高放大器的效率呢?传统的技术采用AB类线性放大器,其效率随输出功率变化,最好只有70%。使用D类功率放大器,利用PWM的方式,可使效率提高到85-90%。 目前为了使设计者更方便地进行电源管理,一些厂商开发了电源管理的软件用于嵌入式操作系统。运用这类操作系统,可以有效地降低软件编制中的工作量,同时优化系统的电源管理。 电源管理对手持设备日趋重要。一个高效的系统是要将电源管理的观念贯穿于设计的每一个环节,并且平衡系统多方面因素设计完成的。随着半导体技术和电路设计技术的发展,会有越来越多的节能技术涌现,为手持产品的不断发展助力。以上就是提高电源管理技术并延长电池使用寿命,希望能给大家帮助。

    时间:2020-04-04 关键词: 电池 手机电池 开关电源

发布文章

技术子站

更多

项目外包