当前位置:首页 > > 充电吧
[导读]1.介绍 Linux网络程序与内核交互的方法是通过ioctl来实现的,ioctl与网络协议栈进行交互,可得到网络接口的信息,网卡设备的映射属性和配置网络接口.并且还能够查看,修改,删除ARP高速缓存的

1.介绍

Linux网络程序与内核交互的方法是通过ioctl来实现的,ioctl与网络协议栈进行交互,可得到网络接口的信息,网卡设备的映射属性和配置网络接口.并且还能够查看,修改,删除ARP高速缓存的信息,所以,我们有必要了解一下ioctl函数的具体实现.

2.相关结构体与相关函数

#include

int ioctl(int d,int request,....);

参数:

d-文件描述符,这里是对网络套接字操作,显然是套接字描述符

request-请求码

省略的部分对应不同的内存缓冲区,而具体的内存缓冲区是由请求码request来决定的,下面看一下具体都有哪些相关缓冲区。

(1)网络接口请求结构ifreq

struct ifreq{
#define IFHWADDRLEN 6 //6个字节的硬件地址,即MAC
union{
char ifrn_name[IFNAMESIZ];//网络接口名称
}ifr_ifrn;
union{
struct sockaddr ifru_addr;//本地IP地址
struct sockaddr ifru_dstaddr;//目标IP地址
struct sockaddr ifru_broadaddr;//广播IP地址
struct sockaddr ifru_netmask;//本地子网掩码地址
struct sockaddr ifru_hwaddr;//本地MAC地址
short ifru_flags;//网络接口标记
int ifru_ivalue;//不同的请求含义不同
struct ifmap ifru_map;//网卡地址映射
int ifru_mtu;//最大传输单元 
char ifru_slave[IFNAMSIZ];//占位符
char ifru_newname[IFNAMSIZE];//新名称
void __user* ifru_data;//用户数据
struct if_settings ifru_settings;//设备协议设置
}ifr_ifru;
}
#define ifr_name ifr_ifrn.ifrn_name;//接口名称
#define ifr_hwaddr ifr_ifru.ifru_hwaddr;//MAC
#define ifr_addr ifr_ifru.ifru_addr;//本地IP
#define ifr_dstaddr ifr_ifru.dstaddr;//目标IP
#define ifr_broadaddr ifr_ifru.broadaddr;//广播IP
#define ifr_netmask ifr_ifru.ifru_netmask;//子网掩码
#define ifr_flags ifr_ifru.ifru_flags;//标志
#define ifr_metric ifr_ifru.ifru_ivalue;//接口侧度
#define ifr_mtu ifr_ifru.ifru_mtu;//最大传输单元
#define ifr_map ifr_ifru.ifru_map;//设备地址映射
#define ifr_slave ifr_ifru.ifru_slave;//副设备
#define ifr_data ifr_ifru.ifru_data;//接口使用
#define ifr_ifrindex ifr_ifru.ifru_ivalue;//网络接口序号
#define ifr_bandwidth ifr_ifru.ifru_ivalue;//连接带宽
#define ifr_qlen ifr_ifru.ifru_ivalue;//传输单元长度
#define ifr_newname ifr_ifru.ifru_newname;//新名称 
#define ifr_seeting ifr_ifru.ifru_settings;//设备协议设置

如果想获得网络接口的相关信息,就传入ifreq结构体.


(2)网卡设备属性ifmap

struct ifmap{//网卡设备的映射属性
unsigned long mem_start;//开始地址
unsigned long mem_end;//结束地址
unsigned short base_addr;//基地址
unsigned char irq;//中断号
unsigned char dma;//DMA
unsigned char port;//端口
}


(3)网络配置接口ifconf

struct ifconf{//网络配置结构体是一种缓冲区
int ifc_len;//缓冲区ifr_buf的大小
union{
char__user *ifcu_buf;//绘冲区指针
struct ifreq__user* ifcu_req;//指向ifreq指针
}ifc_ifcu;
};
#define ifc_buf ifc_ifcu.ifcu_buf;//缓冲区地址
#define ifc_req ifc_ifcu.ifcu_req;//ifc_req地址


(4)ARP高速缓存操作arpreq

/**
ARP高速缓存操作,包含IP地址和硬件地址的映射表
操作ARP高速缓存的命令字 SIOCDARP,SIOCGARP,SIOCSARP分别是删除ARP高速缓存的一条记录,获得ARP高速缓存的一条记录和修改ARP高速缓存的一条记录
struct arpreq{
struct sockaddr arp_pa;//协议地址
struct sockaddr arp_ha;//硬件地址
int arp_flags;//标记
struct sockaddr arp_netmask;//协议地址的子网掩码
char arp_dev[16];//查询网络接口的名称
}


3. 请求码request


类别

Request

说明

数据类型

SIOCATMARK

SIOCSPGRP

SIOCGPGRP

是否位于带外标记

设置套接口的进程ID或进程组ID

获取套接口的进程ID或进程组ID

int

int

int





FIONBIN

FIOASYNC

FIONREAD

FIOSETOWN

FIOGETOWN


设置/清除非阻塞I/O标志

设置/清除信号驱动异步I/O标志

获取接收缓存区中的字节数

设置文件的进程ID或进程组ID

获取文件的进程ID或进程组ID

int

int

int

int

int















SIOCGIFCONF

SIOCSIFADDR

SIOCGIFADDR

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCSIFDSTADDR

SIOCGIFDSTADDR

SIOCGIFBRDADDR

SIOCSIFBRDADDR

SIOCGIFNETMASK

SIOCSIFNETMASK

SIOCGIFMETRIC

SIOCSIFMETRIC

SIOCGIFMTU

SIOCxxx

获取所有接口的清单

设置接口地址

获取接口地址

设置接口标志

获取接口标志

设置点到点地址

获取点到点地址

获取广播地址

设置广播地址

获取子网掩码

设置子网掩码

获取接口的测度

设置接口的测度

获取接口MTU

(还有很多取决于系统的实现)

struct ifconf

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq

struct ifreq


ARP

SIOCSARP

SIOCGARP

SIOCDARP

创建/修改ARP表项

获取ARP表项

删除ARP表项

struct arpreq

struct arpreq

struct arpreq

SIOCADDRT

SIOCDELRT

增加路径

删除路径

struct rtentry

struct rtentry

I_xxx





4. 相关例子

(1)网络接口信息
选项获取填充struct ifreq的ifr_name

#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
ioctl函数是与内核交互的一种方法,使用ioctl函数与内核协议栈进行交互
ioctl函数可操作I/O请求,文件请求与网络接口请求
网络接口请求的几个结构体:
struct ifreq{
#define IFHWADDRLEN 6 //6个字节的硬件地址,即MAC
union{
char ifrn_name[IFNAMESIZ];//网络接口名称
}ifr_ifrn;
union{
struct sockaddr ifru_addr;//本地IP地址
struct sockaddr ifru_dstaddr;//目标IP地址
struct sockaddr ifru_broadaddr;//广播IP地址
struct sockaddr ifru_netmask;//本地子网掩码地址
struct sockaddr ifru_hwaddr;//本地MAC地址
short ifru_flags;//网络接口标记
int ifru_ivalue;//不同的请求含义不同
struct ifmap ifru_map;//网卡地址映射
int ifru_mtu;//最大传输单元 
char ifru_slave[IFNAMSIZ];//占位符
char ifru_newname[IFNAMSIZE];//新名称
void __user* ifru_data;//用户数据
struct if_settings ifru_settings;//设备协议设置
}ifr_ifru;
}
#define ifr_name ifr_ifrn.ifrn_name;//接口名称
#define ifr_hwaddr ifr_ifru.ifru_hwaddr;//MAC
#define ifr_addr ifr_ifru.ifru_addr;//本地IP
#define ifr_dstaddr ifr_ifru.dstaddr;//目标IP
#define ifr_broadaddr ifr_ifru.broadaddr;//广播IP
#define ifr_netmask ifr_ifru.ifru_netmask;//子网掩码
#define ifr_flags ifr_ifru.ifru_flags;//标志
#define ifr_metric ifr_ifru.ifru_ivalue;//接口侧度
#define ifr_mtu ifr_ifru.ifru_mtu;//最大传输单元
#define ifr_map ifr_ifru.ifru_map;//设备地址映射
#define ifr_slave ifr_ifru.ifru_slave;//副设备
#define ifr_data ifr_ifru.ifru_data;//接口使用
#define ifr_ifrindex ifr_ifru.ifru_ivalue;//网络接口序号
#define ifr_bandwidth ifr_ifru.ifru_ivalue;//连接带宽
#define ifr_qlen ifr_ifru.ifru_ivalue;//传输单元长度
#define ifr_newname ifr_ifru.ifru_newname;//新名称 
#define ifr_seeting ifr_ifru.ifru_settings;//设备协议设置
struct ifmap{//网卡设备的映射属性
unsigned long mem_start;//开始地址
unsigned long mem_end;//结束地址
unsigned short base_addr;//基地址
unsigned char irq;//中断号
unsigned char dma;//DMA
unsigned char port;//端口
}
struct ifconf{//网络配置结构体是一种缓冲区
int ifc_len;//缓冲区ifr_buf的大小
union{
char__user *ifcu_buf;//绘冲区指针
struct ifreq__user* ifcu_req;//指向ifreq指针
}ifc_ifcu;
};
#define ifc_buf ifc_ifcu.ifcu_buf;//缓冲区地址
#define ifc_req ifc_ifcu.ifcu_req;//ifc_req地址
(1)获得配置选项SIOCGIFCONF获得网络接口的配置情况 需要填充struct ifreq中ifr_name变量
(2)其它选项获取填充struct ifreq的ifr_name
**/
int main(int argc,char*argv[]){
int s;
int err;
s=socket(AF_INET,SOCK_DGRAM,0);
if(s<0){
perror("socket error");
return;
}
//传入网络接口序号,获得网络接口的名称
struct ifreq ifr;
ifr.ifr_ifindex=2;//获得第2个网络接口的名称 
err=ioctl(s,SIOCGIFNAME,&ifr);
if(err){
perror("index error");
}else{
printf("the %dst interface is:%sn",ifr.ifr_ifindex,ifr.ifr_name);
}
//传入网络接口名称,获得标志
memcpy(ifr.ifr_name,"eth0",5);
err=ioctl(s,SIOCGIFFLAGS,&ifr);
if(!err){
printf("SIOCGIFFLAGS:%dn",ifr.ifr_flags);
}
//获得MTU和MAC
err=ioctl(s,SIOCGIFMTU,&ifr);
if(!err){
printf("SIOCGIFMTU:%dn",ifr.ifr_mtu);
}
//获得MAC地址
err=ioctl(s,SIOCGIFHWADDR,&ifr);
if(!err){
unsigned char* hw=ifr.ifr_hwaddr.sa_data;
printf("SIOCGIFHWADDR:%02x:%02x:%02x:%02x:%02x:%02xn",hw[0],hw[1],hw[2],hw[3],hw[4],hw[5]);
}
//获得网卡映射参数 命令字SIOCGIFMAP
err=ioctl(s,SIOCGIFMAP,&ifr);
if(!err){
printf("SIOCGIFMAP,mem_start:%d,mem_end:%d,base_addr:%d,ifr_map:%d,dma:%d,port:%dn",ifr.ifr_map.mem_start,ifr.ifr_map.mem_end,ifr.ifr_map.base_addr,ifr.ifr_map.irq,ifr.ifr_map.dma,ifr.ifr_map.port);
}
//获得网卡序号
err=ioctl(s,SIOCGIFINDEX,&ifr);
if(!err){
printf("SIOCGIFINDEX:%dn",ifr.ifr_ifindex);
}
//获取发送队列的长度
err=ioctl(s,SIOCGIFTXQLEN,&ifr);
if(!err){
printf("SIOCGIFTXQLEN:%dn",ifr.ifr_qlen);
}
//获取网络接口IP
struct sockaddr_in *sin=(struct sockaddr_in*)&ifr.ifr_addr;//保存的是二进制IP
char ip[16];//字符数组,存放字符串
memset(ip,0,16);
err=ioctl(s,SIOCGIFADDR,&ifr);
if(!err){
inet_ntop(AF_INET,&sin->sin_addr.s_addr,ip,16);//转换的字符串保存到ip数组中,第二个参数是要转换的二进制IP指针,第三个参数是转换完成存放IP的缓冲区,最后一个参数是缓冲区的长度
printf("SIOCGIFADDR:%sn",ip);
}
//查询目标IP地址
err=ioctl(s,SIOCGIFDSTADDR,&ifr);
if(!err){
inet_ntop(AF_INET,&sin->sin_addr.s_addr,ip,16);
printf("SIOCGIFDSTADDR:%sn",ip);
}
//查询子网掩码
err=ioctl(s,SIOCGIFNETMASK,&ifr);
if(!err){
inet_ntop(AF_INET,&sin->sin_addr.s_addr,ip,16);
printf("SIOCGIFNETMASK:%sn",ip);
}
//设置IP地址,设置网络接口
inet_pton(AF_INET,"222.27.253.108",&sin->sin_addr.s_addr);//将字符串IP转换成二进制
err=ioctl(s,SIOCSIFADDR,&ifr);//发送设置本机ip地址请求命令
if(!err){
printf("check IP-----"); 
memset(&ifr,0,sizeof(ifr));
memcpy(ifr.ifr_name,"eth0",5);
ioctl(s,SIOCGIFADDR,&ifr);
inet_ntop(AF_INET,&sin->sin_addr.s_addr,ip,16);
printf("%sn",ip);
}
//得到接口的广播地址
memset(&ifr,0,sizeof(ifr));
memcpy(ifr.ifr_name,"eth0",5);
ioctl(s,SIOCGIFBRDADDR,&ifr);
struct sockaddr_in *broadcast=(struct sockaddr_in*)&ifr.ifr_broadaddr;
//转换成字符串
inet_ntop(AF_INET,&broadcast->sin_addr.s_addr,ip,16);//inet_ntop将二进制IP转换成点分十进制的字符串
printf("BROADCAST IP:%sn",ip);
close(s);
}
运行结果:

[root@localhost ~]# ./ioctl-test
the 2st interface is:eth0
SIOCGIFFLAGS:4163
SIOCGIFMTU:1500
SIOCGIFHWADDR:00:13:d4:36:98:34
SIOCGIFMAP,mem_start:0,mem_end:0,base_addr:60416,ifr_map:201,dma:0,port:0
SIOCGIFINDEX:2
SIOCGIFTXQLEN:1000
SIOCGIFADDR:222.27.253.108
SIOCGIFDSTADDR:222.27.253.108
SIOCGIFNETMASK:255.255.255.0
check IP-----222.27.253.108
BROADCAST IP:222.27.253.255

(2)查看arp高速缓存信息

#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
ARP高速缓存操作,包含IP地址和硬件地址的映射表
操作ARP高速缓存的命令字 SIOCDARP,SIOCGARP,SIOCSARP分别是删除ARP高速缓存的一条记录,获得ARP高速缓存的一条记录和修改ARP高速缓存的一条记录
struct arpreq{
struct sockaddr arp_pa;//协议地址
struct sockaddr arp_ha;//硬件地址
int arp_flags;//标记
struct sockaddr arp_netmask;//协议地址的子网掩码
char arp_dev[16];//查询网络接口的名称
}
**/
//根据IP地址查找硬件地址
int main(int argc,char*argv[]){
int s;
int err;
struct arpreq arpreq;
struct sockaddr_in *addr=(struct sockaddr_in*)&arpreq.arp_pa;//IP地址
s=socket(AF_INET,SOCK_DGRAM,0);
if(s<0){
perror("socket error");
}
addr->sin_family=AF_INET;
addr->sin_addr.s_addr=inet_addr(argv[1]);//转换成二进制IP
if(addr->sin_addr.s_addr==INADDR_NONE){
printf("IP地址格式错误n");
}
strcpy(arpreq.arp_dev,"eth0");
err=ioctl(s,SIOCGARP,&arpreq);
if(err==-1){
perror("arp");
return;
}
unsigned char* hw=(unsigned char*)&arpreq.arp_ha.sa_data;//硬件地址
printf("%sn",argv[1]);
printf("%02x:%02x:%02x:%02x:%02x:%02xn",hw[0],hw[1],hw[2],hw[3],hw[4],hw[5]);
close(s);
return 0;
}

运行结果:

[root@localhost ~]# ./ioctl-arp 222.27.253.1
222.27.253.1
00:0f:e2:5f:3c:8c
查看网关的MAC.在查看ARP高速缓存时要传入IP地址与接口信息.而获得接口信息要传入接口名ifr_name,如eth0.

总结:

本文主要介绍了获得网络接口请求信息,获得网卡设备映射属性,配置网络接口,获得ARP高速缓存等.其它ioctl函数还能对操作文件,操作I/O,操作路由等。最后,对于网络接口的操作与ARP高速缓存的操作分别给出了实例


vxworks系统下获取MAC的实例:

if(!init)
    {
        void *pCookie;
        struct ifnet* pIfp;

        pCookie = (void *)muxTkCookieGet(systemDeviceName(),systemDeviceUnit());

        if (pCookie == NULL)
            return ERROR;

        pIfp = ifunit(systemDeviceFullName());

        if( pIfp == NULL )
            return ERROR;

        if (muxIoctl (pCookie, EIOCGADDR, enet) == ERROR)
        {
            return ERROR;
        }

sprintf(macStr, "%02x:%02x:%02x:%02x:%02x:%02x", enet[0], enet[1], enet[2], enet[3], enet[4], enet[5]);
        init=TRUE;
    }

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭