当前位置:首页 > > 充电吧
[导读]一、硬件原理电池供电通过两个分压电阻接地,STM32则在两电阻中间通过ADC检测电池电压。(引脚BAT_DET) 二、ADC通道初始化 //初始化电池检测ADC //开

一、硬件原理


电池供电通过两个分压电阻接地,STM32则在两电阻中间通过ADC检测电池电压。(引脚BAT_DET)

二、ADC通道初始化
//初始化电池检测ADC
//开启ADC1的通道8    
//BatteryCheck---->PB0
void BatteryCheckInit()
{
  
 //先初PB0为模拟输入
  RCC->APB2ENR|=1<<3; //使能PORTB口时钟
  GPIOB->CRL&=0XFFFFFFF0;//PB0    anolog输入
    //通道8    
    RCC->APB2ENR|=1<<9; //ADC1时钟使能    
    RCC->APB2RSTR|=1<<9; //ADC1复位
    RCC->APB2RSTR&=~(1<<9);//复位结束    
    RCC->CFGR&=~(3<<14); //分频因子清零    
    //SYSCLK/DIV2=12M ADC时钟设置为12M,
    //
    RCC->CFGR|=2<<14;     
    ADC1->CR1&=0XF0FFFF; //工作模式清零
    ADC1->CR1|=0<<16; //独立工作模式
    ADC1->CR1&=~(1<<8); //非扫描模式    
    ADC1->CR2&=~(1<<1); //单次转换模式
    ADC1->CR2&=~(7<<17);    
    ADC1->CR2|=7<<17;     //软件控制转换
    ADC1->CR2|=1<<20; //使用用外部触发(SWSTART)!!!    必须使用一个事件来触发
    ADC1->CR2&=~(1<<11); //右对齐    
    ADC1->CR2|=1<<23; //使能温度传感器

    ADC1->SQR1&=~(0XF<<20);
    ADC1->SQR1&=0<<20; //1个转换在规则序列中 也就是只转换规则序列1             
    //设置通道1的采样时间
    ADC1->SMPR2&=~(7<<3); //通道1采样时间清空    
     ADC1->SMPR2|=7<<3; //通道1  239.5周期,提高采样时间可以提高精确度    

     ADC1->SMPR1&=~(7<<18); //清除通道16原来的设置    
    ADC1->SMPR1|=7<<18; //通道16  239.5周期,提高采样时间可以提高精确度    

    ADC1->CR2|=1<<0;     //开启AD转换器    
    ADC1->CR2|=1<<3; //使能复位校准
    while(ADC1->CR2&1<<3); //等待校准结束             
  //该位由软件设置并由硬件清除。在校准寄存器被初始化后该位将被清除。         
    ADC1->CR2|=1<<2; //开启AD校准    
    while(ADC1->CR2&1<<2); //等待校准结束
    //该位由软件设置以开始校准,并在校准结束时由硬件清除
  
  Battery.BatReal = 3.95;//单位为v 电池实际电压  校准电压时修改
  Battery.ADinput = 1.98;//单位为v R15和R17连接处电压 校准电压时修改
  Battery.ADRef = 3.26;//单位为v 单片机供电电压   校准电压时修改
  Battery.Bat_K = Battery.BatReal/Battery.ADinput;//计算电压计算系数
    Battery.overDischargeCnt = 0;
  
  printf("Batter voltage AD init ...rn");
  
} 1.配置GPIO的时钟,模拟输入模式
2.使能ADC时钟,复位,写入1结束复位。设置分频系数,为12M
3.CR1寄存器配置:设置ADC独立模式,非扫描模式
CR2寄存器配置:A/DConverter OFF,软件控制,使能外部事件转换,设置右对齐,使能温度传感器
4.SQR1设置:配置规则通道转换次数,1次。
5.SMPR2设置通道1,SMPR1设置通道16设置取样周期239.5
6.开启AD转换器,先复位校准,再校准

三、软件获取ADC的值
//获得ADC值
//ch:通道值 0~16
//返回值:转换结果
u16 Get_Adc(u8 ch)
{
    //设置转换序列              
    ADC1->SQR3&=0XFFFFFFE0;//规则序列1 通道ch
    ADC1->SQR3|=ch;                      
    ADC1->CR2|=1<<22; //启动规则转换通道
    while(!(ADC1->SR&1<<1));//等待转换结束         
    return ADC1->DR;         //返回adc值    
}

//获取通道ch的转换值,取times次,然后平均
//ch:通道编号
//times:获取次数
//返回值:通道ch的times次转换结果平均值
u16 Get_Adc_Average(u8 ch,u8 times)
{
    u32 temp_val=0;
    u8 t;
    for(t=0;t<times;t++)
    {
        temp_val+=Get_Adc(ch);
    }
    return temp_val/times;
}

//得到ADC采样内部温度传感器的温度值
//返回值3位温度值 XXX*0.1C    
int Get_Temp(void)
{                
    u16 temp_val=0;
    u8 t;
    float temperate;
    for(t=0;t<20;t++)//读20次,取平均值
    {
        temp_val+=Get_Adc(16);//温度传感器为通道16
    }
    temp_val/=20;
    temperate=(float)temp_val*(3.3/4096);//得到温度传感器的电压值
    temperate=(1.43-temperate)/0.0043+25;//计算出当前温度值    
    temperate*=10;//扩大十倍,使用小数点后一位
    return (int)temperate;    
}


//返回电池电压AD值
int GetBatteryAD()
{
 return Get_Adc_Average(8,5);
} 感觉软件需要封装,获取一次,获取多次平均值,在获取AD电压。                                  

               

 

             

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭