当前位置:首页 > 技术学院 > 基础知识科普站
[导读]拥塞的极端后果是死锁。死锁是网络中最容易发生的故障之一,即使在网络负荷不很重时也会发生。

拥塞的极端后果是死锁。死锁是网络中最容易发生的故障之一,即使在网络负荷不很重时也会发生。死锁发生时,一组节点由于没有空闲缓冲区而无法接收和转发分组,节点之间相互等待,既不能接收分组也不能转发分组,并一直保持这一僵局,严重时甚至导致整个网络的瘫痪。此时,只能靠人工干预来重新启动网络,解除死锁。但重新启动后并未消除引起死锁的隐患,所以可能再次发生死锁。死锁是由于控制技术方面的某些缺陷所引起的,起因通常难以捉摸、难以发现,即使发现,也常常不能立即修复。因此,在各层协议中都必须考虑如何避免死锁的问题。存储转发死锁及其防止最常见的死锁是发生在两个节点之间的直接存储转发死锁。

死锁防止

例如,A节点的所有缓冲区装满了等待输出到B节点的分组,而B节点的所有缓冲区也全部装满了等待输出到A节点的分组;此时,A节点不能从B节点接收分组,B节点也不能从A节点接收分组,从而造成两节点间的死锁。这种情况也可能发生在一组节点之间,例如,A节点企图向B节点发送分组、B节点企图向C节点发送分组、而C节点又企图向A节点发送分组,但此时每个节点都无空闲缓冲区用于接收分组,这种情形称做间接存储转发死锁。当一个节点处于死锁状态时,所有与之相连的链路将被完全拥塞。一种防止存储转发死锁的方法是,每个节点设置M+1个缓冲区,并以0到M编号。M为通信子网的直径,即从任一源节点到任一目的节点间的最大链路段数。每个源节点仅当其0号缓冲区空时才能接收源端系统来的分组,而此分组仅能转发给1号缓冲区空闲的相邻节点,再由该节点将分组转发给它的2号缓冲区空闲的相邻节点……最后,该分组或者顺利到达目的节点并被递交给目的端系统,或者到了某个节点编号为M的缓冲区中再也转发不下去,此时一定发生了循环,应该将该分组丢弃。由于每个分组都是按照编号递增规则分配缓冲区,所以节点之间不会相互等待空闲缓冲区而发生死锁现象。

这种方法的不足之处在于,当某节点虽然有空闲缓冲区,但正巧没有所需要的特定编号的缓冲区时,分组仍要等待,从而造成了缓冲区和链路的浪费。另一种防止存储转发死锁的方法是,使每个分组上都携带一个全局性的惟一的"时间戳",每个节点要为每条输入链路保留一个特殊的接收缓冲区,而其它缓冲区均可用于存放中转分组。在每条输出链路的队列上分组按时间戳顺序排队。例如,节点A要将分组送到节点B,若B节点没有空闲缓冲区,但正巧有要送到A节点的分组,此时A、B节点可通过特殊的接收缓冲区交换分组;若B节点既没有空闲缓冲区,也没有要送往A节点的分组,B节点只好强行将一个出路方向大致与A节点方向相同的分组与A节点互相交换分组,但此时A节点中的分组必须比B节点中的分组具有更早的时间戳,这样才能保证子网中某个最早的分组不受阻挡地转发到目的地。由此可见,每个分组最终总会成为最早的分组,并总能被一步一步地发送到目的节点,从而避免了死锁现象的发生。重装死锁及其防止死锁中比较严重的情况是重装死锁。

假设发给一个端系统的报文很长,被源节点拆成若干个分组发送,目的节点要将所有具有相同编号的分组重新装配成报文递交给目的端系统,若目的节点用于重装报文的缓冲区空间有限,而且它无法知道正在接收的报文究竟被拆成多少个分组,此时,就可能发生严重的问题:为了接收更多的分组,该目的节点用完了它的缓冲空间,但它又不能将尚未拼装完整的报文递送给目的端系统,而邻节点仍在不断地向它传送分组,但它却无法接收。这样,经过多次尝试后,邻节点就会绕道从其它途径再向该目的节点传送分组,但该目的节点已被死锁,其周边区域也由此发生了拥塞。下面几种方法可用以避免重装死锁的发生:①允许目的节点将不完整的报文递交给目的端系统;②一个不能完整重装的报文能被检测出来,并要求发送该报文的源端系统重新传送;③为每个节点配备一个后备缓冲空间,用以暂存不完整的报文。①、②两种方法不能很满意地解决重装死锁,因为它们使端系统中的协议复杂化了。一般的设计中,网络层应该对端系统透明,也即端系统不该考虑诸如报文拆、装之类的事。③方法虽然不涉及端系统,但使每个节点增加了开销。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭