当前位置:首页 > 电源 > 电源
[导读]布局对于降压-升压转换器的成功运行非常关键。

1.关键器件选择

布局对于降压-升压转换器的成功运行非常关键。

LM5175为例:LM5175-Q1 是一款同步四开关降压-升压 DC/DC 控制器,能够将输出电压稳定在输入电压、高于输入电压或者低于输入电压的某一电压值上。LM5175-Q1 可在 3.5V 至 42V 的宽输入电压范围内运行(最大值为 60V),支持各类 应用。

LM5175-Q1 在降压和升压工作模式下均采用电流模式控制,以提供出色的负载和线路调节性能。开关频率可通过外部电阻进行编程,并且可与外部时钟信号同步。

该器件还 具有 可编程软启动功能,并且提供 诸如 逐周期电流限制、输入欠压锁定 (UVLO)、输出过压保护 (OVP) 和热关断等各类保护特性。此外,LM5175-Q1 特有 可选择的连续导通模式 (CCM) 或断续导通模式 (DCM)、可选平均输入或输出电流限制、可降低峰值电磁干扰 (EMI) 的可选扩展频谱以及应对持续过载情况的可选断续模式保护。

良好的布局首先要确定这些关键组件,如图 1 所示:

·  di/dt 回路或热回路。

·  dv/dt 节点。

· 敏感的痕迹。

1:识别高 di/dt 环路、高 dv/dt 节点和敏感走线

1 显示了 LM5175 四开关降压-升压转换器中的高 di/dt 路径。


最主要的高 di/dt 环路是输入开关电流环路和输出开关电流环路。输入回路由输入电容器 (C IN )、MOSFET(Q H1 Q L1)和检测电阻器 (R s ) 组成。输出回路由输出电容器 (C OUT )、MOSFET(Q H2 Q L2)和检测电阻器 (R s ) 组成。

dv/dt 节点是那些具有快速电压转换的节点。这些节点是开关节点(SW1 和 SW2)、引导节点(BOOT1 和 BOOT2)和栅极驱动走线(HDRV1、LDRV1、HDRV2 和 LDRV2),以及它们的返回路径。

从电阻器 R s到集成电路 (IC) 引脚(CS 和 CSG)、输入和输出检测迹线(VISNS、VOSNS、FB)和控制器组件(SLOPE、R c1C c1 C c2 ) 形成对噪声敏感的迹线。它们在图 1 中以蓝色显示。

为了获得良好的布局性能,尽量减少高 di/dt 路径的环路面积,尽量减少高 dv/dt 节点的表面积,并使噪声敏感的走线远离噪声(高 di/dt 和高 dv/dt)部分电路。

2.优化功率级中的热回路

布局对于降压-升压转换器的成功非常关键,第一步是确定关键组件。一旦我们确定了 DC/DC 转换器设计的关键部分,我们的下一个任务就是最大限度地减少任何噪声源和不需要的寄生参数。最大限度地减少热循环是朝着这个方向迈出的重要的第一步。图 1 显示了四开关降压-升压转换器中的热回路或高 di/dt 回路。除了输入和输出开关环路(第 1 至 6 号)之外,图 1 还突出显示了由栅极驱动器及其返回路径形成的热环路。

1:四开关降压-升压转换器中的热回路

由于功率级热回路(红色)包含最大的开关电流,因此首先优化它们。在降压周期中,输入回路(第 1 号)承载开关电流。在升压周期中,输出回路(第 2 号)承载开关电流。根据我的经验,在使用对称布局优化两个回路时,我实现了最低的回路面积和最紧凑的设计。

2 和图 3 是良好功率级布局的示例。图 2a 中所示的布局示例为感测电阻器和 FET 中产生的热量提供了更好的散热路径。考虑遵循图 2b 中所示的布局示例来创建更高密度的设计,因为它将功率级组件更紧密地包装在一起。

2:对称功率级布局最大限度地减少了四开关降压-升压转换器中的输入和输出功率环路,(a) 中等密度设计,(b) 高密度设计

功率级的尺寸、热稳定性和噪声性能需要权衡。较小的 di/dt 环路和较小的 dv/dt 节点具有较低的寄生效应并且辐射也较少。它们在存在外部噪声的情况下也更加稳健,因为较小的环路面积耦合较少的噪声。然而,较小的设计在热方面受到更多限制,因为没有多少铜直接连接到散热元件,包括 MOSFET、检测电阻器和电感器。对于功率相对较高的设计,我们可能需要在开关节点处增加铜面积以限制温度。

3 显示了一种能够处理更高电流并允许 FET 并联的设计。热量分布在 FET 之间,然后可以扩散到相邻的铜平面,从而避免温度过度升高或形成热点。

3:用于更高功率设计的具有平行 FET 和更大铜面积的示例布局


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭