当前位置:首页 > 电源 > 电源电路
[导读]如果我们设计电路,只是去减小稳压器尺寸是一件小事,非常简单。但似乎有更多的组件要塞到电路板上,而不是可用空间。更多的特性和功能需要适应一个狭窄的区域。更高的集成度和摩尔定律在缩小某些器件方面是有效的,但对直流 (DC/DC) 转换器的尺寸影响不大。电源转换器很容易消耗整个系统尺寸的 30% 到 50%。你如何克服这个瓶颈?

如果我们设计电路,只是去减小稳压器尺寸是一件小事,非常简单。但似乎有更多的组件要塞到电路板上,而不是可用空间。更多的特性和功能需要适应一个狭窄的区域。更高的集成度和摩尔定律在缩小某些器件方面是有效的,但对直流 (DC/DC) 转换器的尺寸影响不大。电源转换器很容易消耗整个系统尺寸的 30% 到 50%。你如何克服这个瓶颈?

一个明显的答案是增加工作频率。大多数负载点稳压器都是使用降压(降压)拓扑的开关转换器。提高开关频率会降低满足稳压器设计规范所需的电感和电容。由于电感器和电容器通常占据 DC/DC 转换器中的大部分空间,如图 1(a) 所示,因此非常有效。但这并不是那么简单。那么有什么问题呢?

 

1:工作频率为 500kHz 的 12V IN10A OUT降压转换器 (a) 和工作频率为每相 2MHz 的串联电容器降压转换器 (b)之间的尺寸比较

盲目地增加频率也会增加功率损耗。每次发生开关动作时都会损失能量。因此,开关损耗与频率成比例。转换效率下降和散热可能是一个主要问题。当今大多数转换器的频率限制在数百千赫兹。那些工作在 1MHz 以上的通常是低电压(5V 及以下)和低电流(小于 1A)。

是时候“跳出思维定势”了。几十年来,降压转换器一直是该行业的主力军,但也存在根本的局限性。我们很高兴推出一种针对高电压转换比负载点应用进行优化的新型 DC/DC 转换器拓扑。串联电容器降压转换器可在不影响效率的情况下实现数兆赫操作。正如我们在图 1(b) 中所看到的,总解决方案大小的减少令人印象深刻。对于与图 1(a) 中的降压转换器相同的输入和输出条件,基于TPS54A20的串联电容器降压转换器的体积要小八倍。那是 1,270 mm 3 157 mm 3。

TPS54A20是一款双相同步串联电容降压转换器,专为输入电压轨为12V的小尺寸,低电压应用而设计。器件采用独特的拓扑结构,将开关电容电路与双相降压转换器融为一体,而且拥有诸多优势,其中包括电感间的自动电流均衡,较低的开关损耗(支持高频(HF)操作)以及通过串联电容实现降压。与TPS54A20搭配使用的低值薄型电感显着缩减了解决方案的面积和高度。该器件采用一种自适应导通时间控制架构,可在高达10MHz的工作频率下提供快速瞬态响应和精确稳压。通过使用锁相环(PLL)来锁定基准振荡器的开关信号,从而维持稳定状态下的固定频率操作。

· 双相同步串联电容降压转换器

· 自动相间电流均衡

· 2MHz至

· 输出电压范围为0.51V至2V,反馈基准电压为±0.5%

· 输入过压锁定,实现17V浪涌保护

· 可调节电流限值,自动重启(断续)

· 与一个外部时钟同步

· 稳定状态下<李>

· 内部反馈回路补偿

· 支持外部电源选项的内部栅极驱动LDO

· EN引脚,支持可调节的输入欠压锁定(UVLO)

· 可选软启动时间

· 针对预偏置输出的单调性启动

· 输出电源正常指示器(开漏)

· 输出过压/欠压保护

TPS54A20是12-V,10-A,10-MHz串联电容降压转换器,电流密度超过50 A/cm3,是任何其它12伏功率管理部件或现有解决方案的电流密度的四倍。TPS54A20 SWIFT同步DC/DC转换器具有独特的拓扑结构,可在每相高达5 MHz的条件下高频运作,而无需特殊磁性元件或复合半导体,设计者可在8 V至14 V的输入和10-A输出应用中使用。



 

2:工作频率为 500kHz 的 12V IN10A OUT降压转换器 (a) 和工作频率为每相 2MHz 的串联电容器降压转换器 (b)之间的高度比较

稳压器尺寸的减小为新机遇打开了大门。考虑图 2 所示的高度剖面。图 2(a) 所示的传统降压转换器的高度为 4.8 毫米。这远高于许多系统对其背面组件的高度限制。串联电容器降压转换器(1.2mm 高)的薄型允许我们稳压器放置在电路板的背面。这释放了宝贵的高端房地产。以前在背面安装整个 10A 转换器是不可行的——无源元件太大。有了TPS54A20,现在我们可以了。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭