当前位置:首页 > 智能硬件 > 智能硬件
[导读]在这篇文章中,小编将对PID控制器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

在这篇文章中,小编将对PID控制器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

一、PID控制器微分作用

微分作用主要是用来克服被控对象的滞后,常用于温度控制系统。除采用微分作用外,在使用控制系统时要注意测量传送的滞后问题,如温度测量元件的选择和安装位置等。在常规PID控制器中,微分作用的输出变化与微分时间和偏差变化的速度成比例,而与偏差的大小无关,偏差变化的速度越大,微分时间越长,则微分作用的输出变化越大。但如果微分作用过强,则可能由于变化太快而由其自身引起振荡,使控制器输出中产生明显的“尖峰”或“突跳”。

为了避免这一扰动,在PID调节器和DCS中可使用微分先行PID运算规律,即只对测量值PV进行微分,当人工改变控制器的给定值SP时,不会造成控制器输出的突变,避免了改变SP的瞬间给控制系统带来的扰动。如TDC-3000,则在常规PID算法中增加一个软开关,组态时供用户选择控制器对偏差、还是测量值进行微分。

当输入阶跃信号后,微分器一开始输出的最大变化值与微分作用消失后的输出变化的比值就是微分放大倍数Kd,即微分增益,微分増益的单位是时间,设置微分时间(或者微分增益)为零会取消微分的功能。为便于记住比例、积分、微分三个作用,特抄录三个顺口溜供大家参考。

二、 PID的优缺点

由PID原理介绍及当前应用情况可知,PID算法具有原理简单,且易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点,这也是工业广泛采用PID控器的原因。并且有人已在理论上证明,对于过程控制的典型对象——“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。

尽管PID控制器有诸多的优点,但是它也具有天然的缺陷——P、I、D三者之间是线性组合关系,导致系统总是会出现“超调”、“震荡”等问题,而现有的数学工具还是不足以支撑我们找到一个“通解”。体现在实际的应用中,由于被控过程往往机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在噪声、负载扰动等因素的影响下,过程参数甚至模型结构均会随时间和工作环境的变化而变化,最终导致系统无法满足控制需求。

2002年美国的一次统计报告中指出,目前美国有超过11600个具有PID控制器结构的调节器,然而只有1/3的PID控制器在实际应用中取得了令人满意的控制效果,2/3的PID控制系统的控制性能达不到用户所期望的要求。

三、PID的发展

在实际应用中,人们通过对PID控制结构的一些改进来提高控制性能,如对积分环节的改进,得到积分分离PID控制算法、遇限削弱积分PID控制算法等;对微分环节的改进,得到不完全微分PID控制算法、微分先行PID控制算法、带死区的PID控制算法等。他们在不同程度上克服了传统PID的缺点。如积分分离算法克服了积分饱和,可以显著降低系统的超调,缩短过渡时间。

因此,如何成功的把PID性控制器用于复杂对象的控制上,如何在理论上对各类模型(如模糊模型、小波模型、非参数预测模型及其它人工智能模型等)的工作机理进行更深的认识,使得PID控制器的设计方法更趋于结构化,从而构造出更快、更正确的自适应机制,进而构造出更有效地智能自适应PID控制器。随着计算机技术的发展和传感器集成化程度的提高,智能PID控制将是未来发展方向。

以上所有内容便是小编此次为大家带来的所有介绍,如果你想了解更多有关它的内容,不妨在我们网站或者百度、google进行探索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭