当前位置:首页 > 厂商动态 > ADI
[导读]输出级的作用是提供功率增益。它应该具有高输入阻抗和低输出阻抗。该级的一个显而易见的选择就是发射极跟随器。但是,为了同时提供拉电流和灌电流能力,需要两个互补跟随器:一个NPN型用于拉电流,一个PNP型用于灌电流。结果就是所谓推挽配置,图1显示了一个简单例子。R1和R2用于检测Q1和Q2的集电极电流,以及在输出过载的情况下限制这些电流。

目标

本次实验旨在研究简单推挽放大器的输出级(B类和AB类)。

背景信息

输出级的作用是提供功率增益。它应该具有高输入阻抗和低输出阻抗。该级的一个显而易见的选择就是发射极跟随器。但是,为了同时提供拉电流和灌电流能力,需要两个互补跟随器:一个NPN型用于拉电流,一个PNP型用于灌电流。结果就是所谓推挽配置,图1显示了一个简单例子。R1和R2用于检测Q1和Q2的集电极电流,以及在输出过载的情况下限制这些电流。

材料

► ADALM2000主动学习模块

► 无焊面包板

► 跳线

► 两个100 Ω电阻

► 一个2.2 kΩ电阻

► 两个10 kΩ电阻

► 两个小信号NPN晶体管(最好是具有匹配VBE的SSM2212)

► 两个小信号PNP晶体管(最好是具有匹配VBE的SSM2220)

说明

开始之前,请确保关闭ADALM2000上的电源。电路和实验室硬件的连接如图1所示。示波器输入1应连接到Q1和Q2基极的接合处。示波器输入2应连接到Q1和Q2发射极的接合处。

图1.推挽输出级

硬件设置

示波器的通道1应连接为显示第一发生器的输出,两个通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图2所示。

程序步骤

波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6 V,偏移为0。将正电源(Vp)设置为+5 V,将负电源(Vn)设置为-5 V。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。图3为Scopy波形图示例。

图2.推挽输出级面包板电路

图3.推挽输出级波形

接下来施加电源并调整波形发生器,使W1为100 Hz三角波,其偏移为0 V,峰峰值幅度为3 V。在x-y模式下使用示波器观察电路的电压传输曲线。图4为Scopy XY波形图示例。

图4.电压传输曲线

减少输出失真

在图1所示的基本推挽级中,过零处的大量失真是死区——此时NPN和PNP发射极跟随器均关闭——造成的结果。如果用两个VBE压降预偏置BJT,则波形在过零处的死区大幅减少,如图5所示。这里,预偏置功能由二极管连接的NPN Q1和PNP Q3提供。电阻R1和R2提供偏置电流,并设置流入输出器件Q2和Q4中的空闲电流。

说明

在电源关闭的情况下,组装图5所示电路,引线应尽可能短且整洁。NPN晶体管Q1和Q2以及PNP晶体管Q3和Q4应从VBE匹配最佳的可用器件中选择。在同一封装中制造的晶体管,例如SSM2212或CA3046,往往比单个器件匹配得更好。

图5.具有过零失真消除功能的推挽输出级

考察图5中由Q1、Q2、Q3和Q4的基极发射极电压形成的环路,我们知道环路周围的压降之和必须为零。因此,如果Q1与Q2相同,并且Q3与Q4相同,则仅当Q1中的电流与Q2中的电流相同,并且Q3中的电流与Q4中的电流相同时,环路周围的电压才会为零。当输出为0 V——也就是说RL中没有电流,输入也必然为0 V。

硬件设置

示波器的通道1应连接第一路信号发生器的输出,两个通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图6所示。

图6.具有过零失真消除功能的推挽输出级面包板电路

程序步骤

波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6.0 V,偏移为0。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。

图7.具有过零失真消除功能的推挽输出级波形

另一种配置

记住由Q1、Q2、Q3和Q4的基极发射极电压形成的环路,我们还知道环路周围压降的顺序可以互换。因此,如果互换NPN Q1和PNP Q3的VBE值,我们将得到图8所示的配置。有些人可能意识到,Q3和Q2的组合就是我们在4月份文章“ADALM2000实验:发射极追随器(BJT)”中讨论的低失调跟随器。电路利用PNP发射极跟随器的VBE向上偏移来部分抵消NPN发射极跟随器的VBE向下偏移。晶体管Q1和Q4分别与Q3和Q2互补。

图8.发射极跟随器过零失真消除

硬件设置

示波器的通道1应连接第一路信号发生器的输出,两个示波器通道(1和2)均应设置为以每格1 V显示输出。面包板连接如图9所示。

程序步骤

波形发生器W1配置为1 kHz正弦波,峰峰值幅度约为6 V,偏移为0。使用示波器通道1观察W1的输入,使用示波器通道2观察放大器在RL处的输出。

图9.发射极跟随器过零失真消除面包板电路

图10.发射极跟随器过零失真消除波形

问题:

► 对于图5中的电路(具有过零失真消除功能的推挽输出级)和图8中的电路(发射极跟随器过零失真消除),仿真并绘制输入/输出传输曲线。这些电路与图1中的电路相比如何?

作者简介

Doug Mercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。

Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工程学士学位。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭