当前位置:首页 > 电源 > 电源电路
[导读]在电源中进行出色的效率测量需要许多因素,但我们这里主要关注温度稳定性。其他问题包括测量和分流器的质量和校准。由于效率需要两次电压和两次电流测量,因此使用的电压和电流表的误差可能会叠加。借助最好的手持式仪表(每个约 400 美元)和勤奋的校准,这种“叠加”可以将总体误差限制在 1% 左右。使用更高质量的台式仪器和经过良好校准的分流器,该误差可以减少到 0.1% 左右。

在电源中进行出色的效率测量需要许多因素,但我们这里主要关注温度稳定性。其他问题包括测量和分流器的质量和校准。由于效率需要两次电压和两次电流测量,因此使用的电压和电流表的误差可能会叠加。借助最好的手持式仪表(每个约 400 美元)和勤奋的校准,这种“叠加”可以将总体误差限制在 1% 左右。使用更高质量的台式仪器和经过良好校准的分流器,该误差可以减少到 0.1% 左右。

铜和硅的电阻率每 25 ° C 增加约 10%。传导损耗与电阻率成正比,占大多数电源总损耗的一半以上。如果您可以在材料加热之前进行测量,您可以获得更好的效率读数。但是好到什么程度呢?

电源提示:控制测量电源效率的误差 

1: CSD86350Q5D中的标准化功率损耗与温度的关系

1 显示了CSD86350Q5D中损耗与温度的关系图,该功率级类似于我在下面测试的电源中使用的功率级。每升高 25 ° C,损失增加约 5-6%。对于具有组合 DC、AC 和磁芯损耗的电感器,存在类似的损耗与温度关系。对于效率约为 90% 的电源,这 5-6% 的损耗增加对应于效率降低约 0.5%。

我们的电源设计服务团队拥有一个自动电源效率测试仪,该测试仪使用一个可编程电源、一个可编程负载、四个高精度仪表 (Agilent 34401A)、两个校准分流器和一个 LabVIEW 程序来步进电源负载并收集数据。我担心的一个问题是,在电源有机会稳定在给定负载之前收集数据,从而给出错误的效率读数。我决定对设置进行一些测试,并改变顺序和延迟,看看实际引入了多少错误。

我在 6 英寸 x 6 英寸板上使用了对流冷却(无风扇)12V 至 1.2V TIDA-00324设计,在 90A 时具有 50 ° C 的稳态最大温升,以用作接近“最坏情况” ” 的情况,因此过早的读数会导致错误的更高效率。这是因为较大的电路板比较小的电路板具有更大的热时间常数,并且对流冷却电源比强制风冷电源需要更长的时间来稳定。此外,最终温升越大,稳定所需的时间越长,出错的可能性也越大。在额定满载时上升超过 50 ° C 的设计通常被认为是不可靠的。

我最初进行了三个运行。第一个是电源在满负载下运行直到稳定,数据以 5A 的增量从满载的 90A 逐步下降到空载,读数之间的间隔为 96 秒。这个测试在稳定后需要30分钟,是最“保守”的方法;有错误(如果有)是效率读数太低。

第二次运行是我们设置的典型运行,其中冷电源在空载时启动,并以 5A 的增量逐步加载至 90A。读数之间的唯一延迟是程序的测量延迟,每个读数大约需要 6 秒。这种延迟,加上获得大量读数的愿望,将真正显着减少错误。

第三次运行是为了最大限度地提高“作弊”或在满负载时测量效率,其中冷电源在满负载时启动(我进行了初始读数),然后以 5A 的增量降低负载。

这是结果。稍后我将讨论图 2 中引用的“10 分钟规则”图。

电源提示:控制测量电源效率的误差 

2: PMP10393中的效率与负载,无风扇,四种测量方法

正如预期的那样,最大负载时的错误最大,典型情况下效率报告高 0.3%,而我试图“作弊”最多的情况下效率报告高 0.6%。当达到稳定状态和获得 0.6% 的高效率读数时,我还拍摄了电路板的热图像。

大约有29 ° C的差异。稳态效率降低 0.6% 对应于损耗增加 7.3%。这与每 25 ° C损失增加 5-6% 一致。

典型测量方法中的 0.3% 误差必须与测量中的其他可能误差进行比较。如果仪表是手持式的并且会导致大约 1% 的总体误差,那么这 0.3% 不是主要问题。然而,与高档台式仪器的 0.1% 误差相比,这 0.3% 绝对是显着的。

大约需要 20 分钟才能完全稳定,然后慢慢降低负载将给出最可靠的测量结果。我观察到,如果电源在满负载下稳定运行 4-5 分钟,效率读数将在 0.1% 以内最终 90.12% 的值。在线性加速到满负载期间,平均负载大约是满负载的二分之一,我推断通过在这 5 分钟内将加速扩展两次,总共 10 分钟,将产生大致相同的精度。

然后我回到了典型设置,其中冷电源在空载时启动,并以 5A 的增量逐步加载到 90A,但每次读数增加了 25 秒的测量延迟,以便在 10 分钟后获得完整的 90A 负载。在 10 分钟后均匀分布测量以达到满负荷,这就是我所说的“10 分钟规则” 图 2 中的 10 分钟规则图就是这种方法的结果。最大误差小于 0.14%,小于单个 Fluke 87V 仪表电流测量的校准误差。

使用风扇,我将最大负载增加到 120A,以在满负载的稳定状态下获得相同的 50 ° C 上升。在这里,我能够实施“5 分钟规则”,在 5 分钟而不是 10 分钟内以 5A 的增量从空载上升到 120A 满载。5 分钟结束时 120A 效率读数的误差为 0.13%(88.34% 与 88.21% 的稳态效率)。因此,强制通风应用中的 5 分钟规则将产生与没有风扇应用中的 10 分钟规则相似的精度。

因为我在 6 英寸 x 6 英寸板上进行了测试,稳态下最大满载温升为 50 ° C,所以我希望具有较小板和较低最大温升的设计具有较小的误差,使用相同的无风扇应用的 10 分钟规则和强制通风应用的 5 分钟规则。

总之,在自动效率测试仪设置上运行电源,因为它们通常在负载从零逐渐增加到满负载的情况下运行,但会增加延迟,以在风扇冷却电源的情况下进行 5 分钟的总体测试,在 10 分钟的情况下进行测试在没有风扇的情况下,由于温度稳定,误差将减少到 0.1% 或更低。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭