当前位置:首页 > 消费电子 > 消费电子
[导读]太阳观测卫星是用于检测太阳活动的卫星,太阳是地球的生命之源,但这个脾气有些暴躁的火球也经常对地球人的生活造成威胁。

太阳观测卫星是用于检测太阳活动的卫星,太阳是地球的生命之源,但这个脾气有些暴躁的火球也经常对地球人的生活造成威胁。为了摸清它的脾气,了解太阳磁场中蕴藏的能量以及该能量对地球的影响,对最剧烈的太阳活动——耀斑进行研究,以期最终实现 “太空天气”预报,需要太阳观测卫星来实施。

卫星可以帮助科学家预测未来发生足以影响地球上通信安全的太阳风暴的发生时间和强度。科学家预计2012年,即伦敦奥运会期间,正是太阳在其太阳黑点再现的11年周期里“表现”最活跃的时期。爆发的某些物质可能会使得人造卫星受到破坏,导致地球上的输电网络和通信网络出现异常。太阳的活动还十分平缓,发射观测卫星的行动并不能阻止太阳活动,但是其可以帮助我们提前做好应对准备工作。

太阳,是与我们关系最密切的一颗恒星,也是唯一一颗可以详细研究的恒星。记者从中科院获悉,我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S)将于2022年10月在酒泉卫星发射中心择机发射,将揭示太阳磁场、太阳耀斑和日冕物质抛射(“一磁两暴”)的形成及相互关系。作为中国科学卫星系列“大家族”中的新成员,先进天基太阳天文台日前已启动征名活动,7月11日-24日将面向广大网友征集中文昵称。

我国第一颗综合性太阳探测专用卫星研制时间超过5年,重888KG,将运行在720KM的太阳同步轨道,设计寿命大于4年。它拥有全日面矢量磁象仪、莱曼阿尔法太阳望远镜、太阳硬X射线成像仪,搭载3台有效载荷,将用于测量太阳磁场,观测日冕物质抛射和太阳耀斑。

从古至今,太阳引发了人类太多的思考,我们对这颗耀眼的恒星充满了好奇:它为什么会发光?它是永恒存在的吗?它的结构是什么?它有哪些显著特征?它会对地球造成哪些影响?为了回答这些问题,科学家不仅发展出了相应的理论基础,还建造或发射了各种探测器,层层揭开太阳的神秘面纱。

无论是黑子、太阳耀斑抑或日冕物质抛射,它们的根源都是太阳磁场。变化的太阳磁场不仅可以在光球层产生黑子,还能触发耀斑和日冕物质抛射。太阳磁场、耀斑和日冕物质抛射三者简称为“一磁两暴”,这也是ASO-S卫星的主要科学目标。

太阳会释放出不同波长的光,但地球的大气并非对所有的波段都是透明的,在地面上只能观测到可见光和红外光,以及有限的紫外光和射电辐射,它们在宽广的太阳辐射波谱中只占很小的一部分。所以,只有将探测器发射到太空中去,避开地球大气的影响,从各个波段研究太阳,才能够描绘出一幅完整的图像。

先进天基太阳天文台成功发射后,将详细记录第25个太阳活动周的“太阳风暴”。它将对太阳上剧烈的爆发现象——太阳耀斑和日冕物质抛射以及全日面矢量磁场开展同时观测研究“一磁两暴”的起源、相互作用和彼此关联,为灾害性空间天气预报提供支持。卫星入轨后,每天将产生大约500GB的探测数据,卫星全部科学数据和分析软件将面向全球用户开放共享,共同实现ASO-S科学目标。

“盘古之眼”“夸父逐日”“羲和浴日”……这些关于太阳的古老传说,承载着我们对这颗耀眼恒星的无限好奇。今年下半年,浩瀚宇宙中的中国科学卫星系列“大家族”将再添新星,中国首颗综合性太阳探测专用卫星——“先进天基太阳天文台”(ASO-S)将于10月在酒泉卫星发射中心择机发射,展开对太阳这颗炙热恒星的探索之旅。即日起至7月24日,这颗空间科学卫星面向广大网友征集中文昵称。

大约46亿年前,在距离银河系中心约2.6万光年之处的螺旋臂上,一团分子云开始在自身的引力作用下坍缩,并逐渐形成了我们今天所熟悉的太阳。

太阳,是与我们关系最密切的一颗恒星,也是唯一一颗可以详细研究的恒星。不管是从天文学的角度去探寻恒星奥秘,还是从实际生产生活的角度来讲,对太阳开展系统深入的观测都十分必要。

ASO-S重888千克,研制时间超过5年,将运行在距离地表720千米的太阳同步轨道,设计寿命大于4年。ASO-S以“一磁两暴”为科学目标,“一磁”指的是太阳磁场,大部分的太阳活动都直接受到太阳磁场的支配,而“两暴”指的是太阳上两类最剧烈的爆发现象,即太阳耀斑和日冕物质抛射。

ASO-S将利用太阳活动第25周峰年的契机,对耀斑、日冕物质抛射和全日面矢量磁场开展同时观测,研究“一磁两暴”的起源、相互作用及彼此关联,为严重影响人类正常生活的空间灾害性天气预报提供支持。

ASO-S卫星首席科学家、中国科学院紫金山天文台甘为群研究员介绍,ASO-S卫星上共搭载了3台有效载荷,即全日面矢量磁像仪、莱曼阿尔法太阳望远镜和太阳硬X射线成像仪,将首次实现在一颗近地轨道卫星平台上对全日面矢量磁场、太阳耀斑非热辐射成像和日冕物质抛射的日面形成与近日冕传播同时进行观测,并首次实现莱曼阿尔法波段全日面和近日冕同时观测。

ASO-S卫星入轨后,每天将产生大约500GB的探测数据,卫星全部科学数据和分析软件将面向全球用户开放共享,共同实现ASO-S科学目标。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭