当前位置:首页 > 电源 > 电源电路
[导读]有一天,我的老板让我和他一起在会议室会见一些来自公共交通汽车制造商的人。他说他们的其中一个供应商的产品有问题,并请求我们提供帮助

有一天,我的老板让我和他一起在会议室会见一些来自公共交通汽车制造商的人。他说他们的其中一个供应商的产品有问题,并请求我们提供帮助。

我们会见了地铁车厢制造商的项目经理和他们的供应商之一的工程师。该产品是一种安装在地铁车厢上的新型红色尾灯。与它的名字相反,尾灯安装在车厢的两端,因为大多数地铁车厢都是双向交替运行的。问题是灯工作正常几次然后失败。

灯组件包含 LED 和为其供电的电子电源。他们向我们展示了示意图,其中的一部分在这里:


如何正确的启动晶体管工作

输入电源为 74 伏直流电,由电池供电。该装置是一个非隔离式 DC 到 DC 降压反激式转换器,可为内置 LED 供电。它使用一个控制器 IC U1,带有一个单独的功率 MOSFET,我的原理图中没有显示 MOSFET。MOSFET 切换变压器电感 T1 的初级。变压器上有两个次级绕组。主绕组连接到整流器、D2 和滤波器(未显示),然后连接到 LED(未显示)。辅助绕组经D2整流,C1滤波。然后它为控制器 IC 供电。主要负载是串联并联排列的红色 LED,功耗约为 15 瓦。

控制器不能直接由电池供电,因为电压高于 IC 最大供电值。此外,由于它向 MOSFET 发送栅极信号,它的供电电压不能超过 20 V,否则会损坏 MOSFET。

尾灯设计人员认为,如果他们通过串联电阻分流齐纳电路将 U1 的 Vcc 引脚连接到电源,则为 IC 供电的功率损失将超过 2 瓦,这将使总效率降低约 15%。

所以他们决定使用一个启动电路来为 IC 供电,一旦转换器运行,IC 将由转换器的输出供电。他们还需要关闭该启动电路。他们使用串联电阻 R2 连接到小信号高压 BJT Q1 的集电极,具有足够的电压和电流额定值。晶体管 Q1 的发射极连接到 IC 电源引脚网络,与第二个次级绕组供电相同。Q1 的基极连接到齐纳二极管 D1,由输入电源的高阻值电阻 R1 偏置。一旦转换器启动并运行,辅助绕组电压由 D2 整流并由 C1 滤波。Vcc 增加至高于 D1 电压并使 Q1 的基极-发射极结偏置关闭。这会切断电流并使启动电路损耗几乎为零。

问题是 Q1 反复失败。转换器快速启动,设计师向我保证没有任何部件过热。

我立即看到了问题的根源,但我闭上了嘴。如果我现在告诉他们解决方案,他们会收拾东西,不为我们的专业知识付钱,认为我们花的时间不值得纸上的工作来付钱给我们。我的老板说我们会尽快处理。他们给我们留下了一个工作单元和示意图。

他们一离开大楼,我就和我的老板谈话。设计启动电路是一系列折衷方案:选择高于 IC 最小工作电压的齐纳值,计算变压器的匝数以产生高于齐纳的电压但不要太高,否则会损坏MOSFET。更糟糕的是,转换器正在调节主输出电流而不是辅助输出电压,并且必须在从最小电池电压到最大电池电压的整个范围内运行。

如果辅助绕组的工作电压远高于齐纳电压,Q1 的反向偏置基极-发射极结会击穿并破坏晶体管。MPSA42 的最大 Vebo 通常为 6.0 V,这是一种类似于 Q1 的晶体管,并且是许多 BJT 的典型特征 [1]。如果发射极-基极结反向电流水平较低,则该结表现为齐纳二极管。电流越大,持续时间越长,当恢复正常运行时,β 值就会下降,噪声会增加。如果反向电流过大,则晶体管会失效 [2] [3],这就是该产品中 Q1 失效的原因。

我告诉老板解决方法很简单,在 Q1 的发射极和控制器 Vcc 引脚之间添加一个串联二极管 D3,参见修改后的原理图:


如何正确的启动晶体管工作

他同意我的看法。我修改单位。在整个电池电压范围内,我通过开关循环对其进行了多次测试,并且该装置运行良好。

第二天晚些时候,我的老板打电话给我们的客户说我们已经发现了问题并为他提供了一个简单且低成本的解决方案。一周后,我们的客户通知我们,制造商已经确认了我们对问题的解决方案,他们都对我们的工作非常满意。

吸取的教训是:

1- 谨防 BJT 的基极-发射极结反向偏置,2- 执行严格的设计审查并使用项目列表进行检查,这里的列表是一个好的开始 [4],3- 在给客户答案之前三思而后行,总要牵扯到钱,你的老板用客户的钱付你的薪水,千万不要把钱送出去,最重要的是 4-永远不要让客户看起来像个傻瓜。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。

关键字: 抗饱和晶体管 晶体管 半导体器件

【2024年4月10日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出了业界首款-48 V宽输入电压数字热插拔控制器XDP700-002,扩展了其XDP™数字功率保护控制器系列...

关键字: 控制器 晶体管 5G

恒流源电路作为电子技术中的一个重要组成部分,其稳定性和可靠性对电路的性能和设备的运行具有至关重要的作用。随着科技的不断发展,恒流源电路的形式和应用领域也在不断拓展和深化。本文将详细探讨恒流源电路的几种主要形式及其主要应用...

关键字: 恒流源电路 电子技术 晶体管

随着信息技术的飞速发展,数字电路已成为现代电子设备不可或缺的核心组成部分。在数字电路中,数字晶体管作为一种重要的开关元件,发挥着至关重要的作用。本文将详细探讨数字晶体管的基本概念、工作原理、主要类型、应用领域以及未来发展...

关键字: 数字电路 晶体管 开关元件

SPM31 智能功率模块 (IPM) 用于三相变频驱动应用,能实现更高能效和更佳性能

关键字: 功率模块 IGBT 晶体管

【2024年1月25日,德国慕尼黑和中国深圳讯】英飞凌科技股份公司(FSE代码:IFX /OTCQX代码:IFNNY)近日宣布其与全球充电技术领域的领导者安克创新(Anker Innovations) 在深圳联合成立创新...

关键字: MOSFET 氮化镓 晶体管

IGBT模块在电力电子领域中扮演着重要的角色,它是一种基于绝缘栅双极晶体管(Insulated Gate Bipolar Transistor)的功率模块。IGBT模块的作用是将电能进行转换和控制,广泛应用于电机驱动、电...

关键字: IGBT模块 电力电子 晶体管

业内消息,近日台积电在IEDM 2023会议上制定了提供包含1万亿个晶体管的芯片封装路线,来自单个芯片封装上的3D封装小芯片集合,与此同时台积电也在开发单个芯片2000亿晶体管,该战略和英特尔类似。

关键字: 台积电 1nm 晶体管 芯片封装

毋庸置疑的是,与“摩尔定律”紧密相关单芯片晶体管数量和工艺几何尺寸演进正在迎来一个“奇点时刻”。与此同时,终端应用的高算力需求依然在不断推高单芯片Die尺寸,在光罩墙的物理性制约之下,众多芯片设计厂商在芯片工艺与良率的流...

关键字: 晶体管 芯片设计 算力

在今年9月,英特尔宣布率先推出用于下一代先进封装的玻璃基板,并计划在未来几年内向市场提供完整的解决方案,从而使单个封装内的晶体管数量不断增加,继续推动摩尔定律,满足以数据为中心的应用的算力需求。

关键字: 玻璃基板 晶体管 算力
关闭