当前位置:首页 > 电源 > 电源电路
[导读]电力电子的概念已经发展,如今它与与电力转换、其控制和相对效率相关的技术相关联。该部门还与适合能源转换的所有电气和电子系统密切相关。在电力电子中进行的电路研究主要集中在效率上。能源是一种非常宝贵的资源,必须以尽可能最便宜的方式使用。正是由于这个原因,必须尽量减少电子设备中的散热和功率损耗。

电力电子的概念已经发展,如今它与与电力转换、其控制和相对效率相关的技术相关联。该部门还与适合能源转换的所有电气和电子系统密切相关。在电力电子中进行的电路研究主要集中在效率上。能源是一种非常宝贵的资源,必须以尽可能最便宜的方式使用。正是由于这个原因,必须尽量减少电子设备中的散热和功率损耗。

换句话说,从设备的输入端传递到输出端的能量不应该减少和减少。电力电子系统的应用越来越多,跨越不同的领域。DC/DC、AC/DC 和 AC/AC 转换器、不间断电源、电池充电器和电源只是功率因数校正和绝缘概念发挥作用的一些示例。在企业、工厂甚至家庭中,有许多设备会吸收大量能量。它们必须以最佳方式设计,以确保极高的安全性和可靠性,但最重要的是,要超过政府和当局为获得认证而规定的规格。电力电子的目的是节省电力,降低运营成本并提高电气系统的安全性。它们必须以最佳方式设计,以确保极高的安全性和可靠性,但最重要的是,要超过政府和当局为获得认证而规定的规格。

电力电子的目的是节省电力,降低运营成本并提高电气系统的安全性。它们必须以最佳方式设计,以确保极高的安全性和可靠性,但最重要的是,要超过政府和当局为获得认证而规定的规格。电力电子的目的是节省电力,降低运营成本并提高电气系统的安全性。

电路效率

在电力电子领域,效率为 99.9% 的设备能够使用所有可用能源而不会造成浪费。

另一方面,效率为 45% 的设备能够使用发电机吸收的不到一半的功率,其余的则在未使用的热量中损失掉。在某些应用中,设备需要产生热量,例如厨房烤箱和加热器。在大多数应用中,有效利用能源是一个关键因素。超过 95% 的效率会带来出色的结果,但现代设备可以实现更高的效率。电路的效率越高,浪费的能量就越少,这会导致热量散发并降低电子元件的平均寿命。为了最小化能量损失,电源电路中的电子设备和组件被用作电子开关,在开关和高频模式下,以最小化功耗。对于非常高功率的转换器,可持续性。效率可以很容易地用输出功率除以输入功率的百分比来计算。计算电路效率的基本公式如下:


电力电子课程第 2 部分:电路效率

效率高,电子元件工作更好,散热更少,可靠性和安全性更高。图 3 中的图表显示了新材料如何提高器件效率。显然,这是一个不排除对未来新发现的任何技术影响的统计数据。今天的研究集中在可以减少组件体积和重量的新技术上,这是一个重要因素,尤其是在汽车、航天和医疗领域。未来几年将至关重要,随着解决方案越来越接近完美,公司当然会采取越来越小的步骤。技术一直在寻找对电子具有最低电阻的材料。只有这样才能获得更高效、更可靠的系统。


电力电子课程第 2 部分:电路效率图 3:随着时间的推移,逆变器的预测平均效率

结论

如引言所述,电流是有组织的电子流。对于 10-mA 和 80-A 电流,此通道是相同的。只有参与流动的电子数量会发生变化,就像塑料管中的水一样。然而,结果却大相径庭。如前所述,低电流和高电流电路之间的限制相当窄,大约为 5-10 A。由于最近的材料技术进步,今天的电力电子设备非常高效。GaN和 SiC毫无疑问,在提高电导率以及操作和开关速度方面,都为该行业的改善做出了重大贡献。与石墨烯一起,它们为能源消耗优化做出了重大贡献。创新应用于各个领域,电力电子将在不久的将来发挥举足轻重的作用。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

在电力电子和电气工程领域,可调电源作为一种重要的设备,其应用广泛且作用关键。可调电源不仅能够提供稳定的电力输出,而且能够实现对电压和电流的精确调节,满足各种复杂电子设备的需求。本文将对可调电源的工作原理进行深入探讨,并重...

关键字: 可调电源 电力电子

飞跨电容(Flying Capacitor)这一术语在电力电子技术领域有着特定的应用和重要意义,它主要出现在多电平逆变器和相关电能转换系统的设计中。作为一种高性能的储能元件,飞跨电容不仅能够有效平衡不同层级间的能量分配,...

关键字: 飞跨电容 电力电子

在科技飞速发展的今天,电力电子技术在各个领域中发挥着越来越重要的作用。其中,高边开关作为一种关键的电子开关技术,以其独特的工作原理和广泛的应用场景,成为了电力电子技术领域的一颗璀璨明珠。本文将详细阐述高边开关的工作原理,...

关键字: 高边开关 电力电子

高压变频器作为现代电力电子技术的杰出代表,已经在电力、冶金、化工、矿山等工业领域得到广泛应用。它通过改变交流电源的频率,实现对电动机转速的精确控制,从而满足各种复杂的工艺需求。本文将深入探讨高压变频器的工作原理,以期为相...

关键字: 高压变频器 电力电子 电动机

随着电力电子技术的不断发展,高频开关电源作为一种高效、节能的电源转换设备,已经在通信、计算机、工业自动化等多个领域得到广泛应用。本文将对高频开关电源的基本原理、主要特点、应用领域以及未来发展趋势进行详细阐述。

关键字: 电力电子 高频开关电源 工业自动化

在电力电子和电气工程领域,反向电压是一个常见且重要的概念。它指的是与正常工作电压方向相反的电压,通常由于电路中元件的非线性特性、电磁感应、负载变化等多种因素而产生。本文将对反向电压的产生机制进行深入探讨,并阐述其在科技领...

关键字: 反向电压 电力电子

直流电源,作为电力电子领域中的重要组成部分,广泛应用于各种电子设备和系统中。在谈及直流电源的可调频问题时,我们首先需要明确“调频”这一概念在直流电源中的具体含义。调频通常指的是改变交流电源的频率,而直流电源输出的是恒定的...

关键字: 直流电源 电力电子 频率

在现代电力电子技术的发展中,逆变器作为一种将直流电转换为交流电的重要设备,广泛应用于各个领域。逆变器种类繁多,其中工频逆变器与高频逆变器是两种常见的类型。它们在工作原理、性能特点、应用场景等方面存在着明显的差异。本文将对...

关键字: 电力电子 逆变器 开关电源

在电力电子和实验室设备中,可调电源是一种非常常见的设备,它能够根据用户需求提供稳定且可调的输出电压和电流。在可调电源的控制面板上,通常会有一系列的按钮和旋钮,用于设置和调整电源的参数。其中,“VOL”按钮是一个重要的控制...

关键字: 电力电子 可调电源 控制面板

在电力电子和电池管理领域,降低电源的充电电流是一个重要的议题。过高的充电电流可能会对电池产生不利影响,缩短电池寿命,甚至导致安全问题。因此,如何有效地降低电源的充电电流成为了研究者和技术人员关注的重点。本文将从充电电流的...

关键字: 电力电子 电池管理 充电电流
关闭