当前位置:首页 > 厂商动态 > 亚马逊云科技
[导读]北京——2022年9月14日,日前,亚马逊云科技为其机器学习数据标注服务Amazon SageMaker Ground Truth新增合成数据(图像)生成功能。客户使用这一新功能,可以生成数十万计已标注的合成图像,无需手动标注数据,提高标注的准确性,并快速获取高质量的训练数据集。该功能的推出让Amazon SageMaker变得更强大,作为亚马逊云科技机器学习服务层面的核心产品,亚马逊云科技不断丰富Amazon SageMaker的功能,仅2021年就推出60多项新的特性和功能。


北京——2022年9月14日,日前,亚马逊云科技为其机器学习数据标注服务Amazon SageMaker Ground Truth新增合成数据(图像)生成功能。客户使用这一新功能,可以生成数十万计已标注的合成图像,无需手动标注数据,提高标注的准确性,并快速获取高质量的训练数据集。该功能的推出让Amazon SageMaker变得更强大,作为亚马逊云科技机器学习服务层面的核心产品,亚马逊云科技不断丰富Amazon SageMaker的功能,仅2021年就推出60多项新的特性和功能。

机器学习(ML)模型构建是一个不断重复、迭代的过程,从数据收集和准备开始,然后是模型训练和部署。其中,为模型训练收集大量、多样化且准确标注的数据集,是非常具有挑战性并耗时的第一步。

以计算机视觉(CV)应用为例,在工业领域,该技术能够改善生产质量、提高仓库管理的自动化水平等,目前已在工业数字化和智能化发挥了关键作用。然而,为训练计算机视觉模型而收集数据的过程既耗时又费力,有时甚至几乎无法完成。为确保模型的准确性,数据科学家可能会花费数月时间,从生产环境中收集数十万张图像,尽可能涵盖数据的所有变化。但在某些情况下,例如,要获取罕见或价格昂贵的产品的缺陷的图像,只有通过故意损坏产品这种极端方式才能实现,这让数据科学家无法从真实数据中找到所有的数据变化。

收集完所有数据后,数据科学家团队还需要准确地标注图像,这又是一项艰巨的任务。手动标注图像进程缓慢且容易出现人为错误;同时,构建自定义标注工具和设置缩放标注操作可能既耗时又昂贵。将真实数据与合成数据相结合是缓解这一挑战的方法之一,让数据科学团队可以创建更完整和平衡的数据集并增加数据的多样性。

亚马逊云科技机器学习数据标注服务Amazon SageMaker Ground Truth,可以让客户创建任何图像数据,包括在现实世界中难以发现和复制的特殊场景数据。客户甚至可以自定义对象和环境的变量,例如反映不同的照明、颜色、纹理、姿势或背景。Amazon SageMaker Ground Truth让数据科学家可以为其正在训练的机器学习模型“量身定制”特定用例。此外,客户还可以选择Amazon SageMaker Ground Truth Plus,借助亚马逊云科技的专家团队创建高质量的训练数据集,无需构建用于标注的应用程序或自行管理标注的人员。

Plus One Robotics是一家物流机器人视觉软件开发商。Plus One Robotics 创始人、首席技术官Shaun Edwards 表示,“随着人力资源的减少以及仓库商品量的激增,客户希望我们能帮助他们处理仓库中千变万化的物品。新入库的商品可能是首次出现,或者只在特定情形下出现。使用合成数据能让我们预先对系统进行训练,以应对现实可能遇到的各种情况。我们使用Amazon SageMaker Ground Truth生成数以万计带标签的、来自不同承运商的逼真物品图像,对物品姿势、位置、甚至贴纸或标签之类的表面变化进行建模。合成图像使我们能够更快地训练性能更好的系统,其完整性和精确性使我们免去繁琐的数据标注和清洗步骤,每天为客户超过100万的运单提供支持。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

液压舵机壳体是航空液压操纵系统的核心零件 , 内部包含大量复杂流道 。传统的流道路径人工设计方法效率低下 , 结果一致性差 。针对该问题 , 提出了一种基于混合近端策略优化(HPP0算法)的流道路径规划算法 。通过分析流...

关键字: 液压流道规划 机器学习 HPP0算法 减材制造 液压舵机壳体

深入探索这一个由 ML 驱动的时域超级采样的实用方法

关键字: 机器学习 GPU 滤波器

在人工智能的发展历程中,我们往往认为更多的训练、更复杂的数据能让 AI 变得更加智能。然而,近期一些研究却揭示了令人意外的现象:对小型 AI 语言模型进行数学训练时,过度训练可能会导致其表现急剧下降,甚至出现 “变笨”...

关键字: 人工智能 数据 模型

传统的网络安全防护手段多依赖于预先设定的规则和特征库,面对日益复杂多变、层出不穷的新型网络威胁,往往力不从心,难以做到及时且精准的识别。AI 技术的融入则彻底改变了这一局面。机器学习算法能够对海量的网络数据进行深度学习,...

关键字: 网络安全 机器学习 辅助决策

人工智能(AI)和机器学习(ML)是使系统能够从数据中学习、进行推理并随着时间的推移提高性能的关键技术。这些技术通常用于大型数据中心和功能强大的GPU,但在微控制器(MCU)等资源受限的器件上部署这些技术的需求也在不断增...

关键字: 嵌入式系统 人工智能 机器学习

北京——2025年7月30日 自 2018 年以来,AWS DeepRacer 已吸引全球超过 56 万名开发者参与,充分印证了开发者可以通过竞技实现能力成长的实践路径。如今,亚马逊云科技将通过亚马逊云科技AI联赛,将这...

关键字: AI 机器学习

2025年7月28日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 持续扩展其针对机器学习 (ML) 工作优化的专用解决方案产品组合。

关键字: 嵌入式 机器学习 人工智能

在这个高速发展的时代,无论是健身、竞技、兴趣活动,还是康复训练,对身体表现的感知与理解,正成为提升表现、实现突破的关键。如今,先进技术正为我们架起一座桥梁,将每一次身体活动转化为有价值的洞察,帮助我们更聪明地训练、更高效...

关键字: 传感器 机器学习 IMU

在科技飞速发展的当下,边缘 AI 正经历着一场深刻的变革。从最初的 TinyML 微型机器学习探索低功耗 AI 推理,到边缘推理框架的落地应用,再到平台级 AI 部署工具的兴起以及垂类模型的大热,我们已经成功实现了 “让...

关键字: 机器学习 边缘 AI 无人机

在AI算力需求指数级增长的背景下,NVIDIA BlueField-3 DPU凭借其512个NPU核心和400Gbps线速转发能力,为机器学习推理提供了革命性的硬件卸载方案。通过将PyTorch模型量化至INT8精度...

关键字: PyTorch 机器学习 DPU
关闭