当前位置:首页 > 厂商动态 > 厂商动态
[导读]根据检测工艺所处的环节,IC集成电路检测被分为设计验证、前道量检测和后道检测。前道量测、检测均会用到光学技术和电子束技术,其中光学量测通过分析光的反射、衍射光谱间接进行测量,其优点是速度快、分辨率高、非破坏性。后道检测工艺是芯片生产线的“质检员”,根据工艺在封装环节的前后顺序,后道检测可以分为CP测试和FT测试。

根据检测工艺所处的环节,IC集成电路检测被分为设计验证、前道量检测和后道检测。前道量测、检测均会用到光学技术和电子束技术,其中光学量测通过分析光的反射、衍射光谱间接进行测量,其优点是速度快、分辨率高、非破坏性。后道检测工艺是芯片生产线的“质检员”,根据工艺在封装环节的前后顺序,后道检测可以分为CP测试和FT测试。

在以上测试中,光谱仪可以用于膜厚测量、蚀刻终点监控等工艺中。

(一) 膜厚测量

半导体集成电路的生产以数十次至数百次的镀膜、光刻、蚀刻、去膜、平坦等为主要工序,膜层的厚度、均匀性等直接影响芯片的质量和产量,在加工中必须不断地检测及控制膜层的厚度。光学薄膜测厚仪是半导体生产流程中必不可少的设备之一,用于对芯片晶圆及相关半导体材料的镀膜厚度等进行检测。

半导体光学薄膜测厚仪技术主要有光谱反射仪和椭偏仪两种。椭偏仪考虑了光的极化,采用P波和S偏振反射光之间的相位差异,适用于非常薄的薄膜,并可直接测试N,K值。光谱反射仪虽然没有椭偏仪的这些性能,但也能测量数纳米以下的薄膜厚度,测量精度高,而且测量速度较快。

基于光波的干涉现象,光束照射在薄膜表面,由于入射介质、薄膜材料和基底材料具有不同的折射率值和消光系数值,使得光束在透明/半透明薄膜的上下表面发生反射,反射光波相互干涉,从而形成干涉光,这些干涉光在不同相位处的强度将随着薄膜的厚度发生变化。通过对干涉光的检测,结合适当的光学模型即可计算得到薄膜的厚度。

海洋光学(Ocean Insight)膜厚仪检测系统,配置有采样平台、UV-VIS反射探头,配置如下。

图1:薄膜厚度测量系统配置

(二) 终点监控

在基于等离子体的蚀刻工艺中,等离子体监测对工艺控制很重要。晶圆是用光刻技术制造和操作的,蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。

等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如海洋光学的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。

图2:模块化的光谱仪设置可以配置为真空室中的等离子体测量。

图3:通过真空室窗口测量氩气等离子体的发射。

紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。Maya2000 Pro在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。

半导体领域中的光谱应用是海洋光学的未来业务侧重点之一。从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrog Technology)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。

本文资料来源-海洋光学/ 编辑整理-爱蛙科技

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭