当前位置:首页 > 芯闻号 > 产业动态
[导读]深圳2022年9月16日 /美通社/ -- 针对联邦学习全局模型的版权保护问题,微众银行AI团队联合上海交通大学在人工智能学术期刊《IEEE模式分析与机器智能汇刊》(IEEE T-PAMI,IEEE Transactions on Pattern Analysis an...

深圳2022年9月16日 /美通社/ -- 针对联邦学习全局模型的版权保护问题,微众银行AI团队联合上海交通大学在人工智能学术期刊《IEEE模式分析与机器智能汇刊》(IEEE T-PAMI,IEEE Transactions on Pattern Analysis and Machine Intelligence,涉及人工智能、计算机视觉、模式识别等多个领域)上发表了题为“FedIPR: 联邦深度神经网络模型的所属权验证”(FedIPR: Ownership Verification for Federated Deep Neural Network Models)的论文。该论文从算法、协议、安全等多个角度出发,就联邦学习模型知识产权保护问题,分享了他们对模型知识产权保护的思考和工作,提出了名为“FedIPR”的联邦学习模型版权保护框架。

近年来,深度神经网络(DNN)等机器学习技术在诸多领域取得了巨大成功,许多科技公司都将神经网络模型部署在商业产品中,提高效益。训练先进的神经网络模型需要大规模数据集、庞大的计算资源和设计者的智慧,具体体现在如下三个领域:

一、深度学习模型应用的训练模型规模巨大。以 GPT-3 为例,其预训练所用的数据量达到 45TB,训练费用超过 1200 万美元,有着极高的经济成本。

二、深度学习模型在训练部署到工业应用场景过程中需要引入相关领域的先验知识。例如,其在智慧金融、智慧医疗领域的应用,需要引入金融、医疗等领域专有先验知识。因此,在模型设计过程,开发者需要引入专家的知识和经验来订制模型,这也体现了人脑力的知识产权。

三、深度学习模型的训练过程需要特定领域的海量数据作为训练资源,而数据本身具有价值和知识属性。

以上属性决定了经过训练的深度学习模型具有很高的商业价值和知识属性,必须将其纳入合法所有者(即创建它的一方)的知识产权。因此,从技术层面,行业也面临迫切保护深度神经网络(DNN)模型的知识产权,以防止其被非法复制、重新分发或滥用。

针对昂贵的模型,攻击者可以采用技术手段或者非技术手段进行窃取;但要确认盗用且声明模型所有权,则是完全从人工智能理论方法角度出发,模型的所有权认证技术需要保证不牺牲模型可用性前提下,提供可靠且稳健的知识产权保护方法。

相比于中心化场景的模型训练,联邦学习分布式训练涉及多个参与方,存在参与方被敌手攻击或者模型搭便车的情况,因此有更大的人工智能模型泄露风险,对联邦学习模型的所属权构成了潜在的侵犯风险。

FedIPR: 联邦学习模型所属权验证


传统的深度学习模型知识产权保护方法主要着眼于深度神经网络水印的算法实践和稳健性挑战,没有把模型水印实践到可信联邦学习方向的研究。微众银行AI团队提出的FedIPR框架考虑一种不完全信任的联邦学习系统,假定联邦学习各参与方能够按照联邦法则来进行模型更新和协同训练,但彼此不泄露私有本地数据和私密签名。在这种设定下,FedIPR阐述了一种新颖的联合深度神经网络(FedDNN)所有权验证方案(图1[1]),该方案允许嵌入和验证所有权签名,以声明 FedDNN 模型的合法知识产权(IPR),以防模型被非法复制、重新分发或滥用

图1


图1

微众银行AI团队提出黑盒与白盒两阶段验证联邦学习模型所属权的框架分为两个阶段(图2) :

一、黑盒阶段,不需要访问模型参数和内部结构,只需输入特定样本进入模型API, 根据模型输出判定模型所属权,为模型所属权提供初步依据。

二、白盒验证阶段,执法机关根据上一阶段,打开模型参数和结构,验证模型参数中是否嵌入有实现给定的能证明所属权的“水印”。

图2


图2

针对白盒模型验证场景,团队创新地提出了针对 batch normalization 层(图3)的仿射变换参数,进行水印嵌入,该嵌入方法具有强可用性和稳健性。

图3


图3

FedIPR 框架创新性地解决了模型所有权验证在联邦学习中的两大挑战:

一、亟需解决多水印冲突问题。特别是对于基于特征的水印,对于不同的客户是否可以有一个通用的解决方案来嵌入他们的私人指定水印。如下图4所示,当不同客户端希望各自嵌入水印进全局联邦学习模型当中,多个水印可能彼此发生冲突。针对该挑战,FedIPR提出用秘密提取矩阵的方式,解决了多个水印在联邦学习模型之中互相冲突的挑战。

图4


图4

二、亟需解决性能问题。水印的稳健性表明模型水印是否能在联邦学习模型各种训练策略中适用,以及是否能抵御各种去除水印的攻击。FedIPR采用客户端嵌入的方式在差分隐私、鲁棒聚合、模型剪枝、微调等多种设定下进行了实验。

表1


表1

该论文展示了相关实验结果,阐述了FedIPR在主任务可用性,水印显著性以及稳健性方面的性能,卓越的性能证明了基于后门和特征的水印都能提供良好的联邦学习模型所有权验证。

图5 FedIPR框架下FedDNN 模型主任务性能


图5 FedIPR框架下FedDNN 模型主任务性能

 

图6 FedIPR 框架下的FedDNN 模型的水印检测率与理论界限的比较


图6 FedIPR 框架下的FedDNN 模型的水印检测率与理论界限的比较

Github 代码链接:https://github.com/purp1eHaze/FedIPR 

[1] 文章配图均来自于论文FedIPR: Ownership Verification for Federated Deep Neural Network Models (https://ieeexplore.ieee.org/document/9847383/)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭