当前位置:首页 > > 新基建
[导读]尽管天然气价格飙升,全球对可持续性的关注日益增加,但交通运输部门仍占全球碳排放量的 18%。因此,电动汽车已成为临时解决方案的重要组成部分。凭借其零道路碳排放的承诺和全球相对便宜的电力供应,电动汽车正朝着主导移动和运输市场的方向迈进。

尽管天然气价格飙升,全球对可持续性的关注日益增加,但交通运输部门仍占全球碳排放量的 18%。因此,电动汽车已成为临时解决方案的重要组成部分。凭借其零道路碳排放的承诺和全球相对便宜的电力供应,电动汽车正朝着主导移动和运输市场的方向迈进。

许多专门的电动汽车公司的诞生以及试图满足日益增长的电动汽车需求的老牌企业的诞生证明了电动汽车的必要性。此外,由于无情的需求导致市场竞争加剧,促使这些公司在广泛的领域开发他们的技术,从而导致电动汽车领域的许多改进。与柴油发动机车辆相比,这些创新使电动汽车的排放量减少了 43%。为了可持续地优化这一排放问题的解决方案,需要智能解决方案,其中之一就是数字双胞胎的概念。

了解数字孪生

顾名思义,数字双胞胎是模拟或数字空间中现实世界或物理设备的双胞胎。它们是由从飞机发动机和车辆到风车和城市建筑物的物理对象建造的。通过将物联网 (IoT) 与具有人工智能和机器学习功能的最新软件工具相结合,可以轻松提高数字双胞胎的性能。数字双胞胎正在迅速成为 21 世纪的一项主要工程技术。多亏了模拟,研究人员可以在任何数字双胞胎上进行无数次测试,这在物理设备上是困难的。

自 20 年前概念诞生以来,许多研究人员和研究所已经定义了数字孪生并致力于构建基于它们的有效软件系统。数字孪生是现实世界对象的复制品,因此也可用于复制基于它们的流程。这为对设备执行预测性维护和检查铺平了道路。

理解数字双胞胎的一个简单例子是水电站中的涡轮机,它连接了许多传感器。收集的传感器数据(例如水流量、温度和能量输出)被馈送到数字双胞胎。通过这些输入,可以执行模拟来分析健康和维护数据,从而延长物理资产的使用寿命。

使用数字孪生构建高效电动汽车

正如我们之前所见,电动汽车有望显着减少碳足迹。让这些车辆上路的主要挑战之一是它们的定价和电池容量。应对这些挑战的一种方法是优化车辆内的电能消耗,我们需要一个支持架构来实现它。数字孪生作为所需的架构,与物联网一起将离线物理资产映射到数字模型。凭借 EV 生成的大量感官数据,数字孪生技术比硬件在环模拟等其他技术更适合。这种转换可以实现智能系统监控、预测即将发生的事件、故障检测、剩余使用寿命等,这些将在接下来的几节中讨论。

自动驾驶系统

自动导引车(AGV)领域发展迅速,数字孪生技术在其发展中发挥着重要作用。数字孪生系统用于通过将决策算法暴露于各种场景来生成控制系统响应。这有助于以无法在物理系统中复制的规模生成车辆大数据。嵌入在 AGV 中的 AI 模型使用数字孪生系统生成的响应进行训练。这使得数字双胞胎既可以用于生成训练模型,也可以用作新技术的测试平台。数字双胞胎还可以使用实时互连或使用可以使用档案数据集生成的预测模型与物理系统同步。

高级驾驶辅助系统

现代智能汽车的显着特点之一是高级驾驶辅助系统 (ADAS)。它的存在是为了通过减少事故的数量和严重程度来提高驾驶员和行人的安全性。数字双胞胎可用于生成其他驾驶员、行人等因素的虚拟对应物,并且使用它,ADAS系统的决策模型也可以使用历史数据进行训练。这可以与来自物理车辆传感器的实时数据相辅相成,模型可以根据这两种数据执行操作。

车辆健康监测和预测性维护

持续监测 EV 的健康状态是维持和延长其使用寿命的重要因素。与故障后维护相比,车辆健康管理系统的发展导致了基于状态的管理。数字双胞胎具有在模拟环境中测试各种场景的功能,可帮助制造商将易磨损的车辆部件推向极限。这些模型还可用于预测电机等组件的剩余寿命,而无需实际从车辆上卸下组件。

电池管理及智能充电系统

通过采用数字双胞胎和物联网框架,可以构建高效的充电基础设施,优化电子控制单元 (ECU) 和 EV 动力传动系统。电池管理系统 (BMS) 是任何大型电池组的重要组成部分,可提供电池容量、充电/放电期间的折旧、充电状态 (SoC) 等信息。这些可用作数字孪生模型,用于开发电池各个方面的模型,例如最佳充电和放电速率和 SoC,以根据当前的 SoC 和历史驾驶趋势准确告知用户车辆可以行驶的距离。

智能电动汽车的未来展望

如前所述,数字双胞胎可以在整个电动汽车行业的发展中发挥巨大作用,从消费者的角度来看,这有助于提供概念上可持续且运行可靠的产品。然而,数字孪生技术的影响远远超出了电动汽车制造和运营的优化。它可用于让消费者了解电动汽车与传统汽车相比的不同之处,这是决定将电动汽车作为可行替代品的前景的一个重要因素。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭