当前位置:首页 > 测试测量 > 测试测量
[导读]在下述的内容中,小编将会对信号发生器的相关消息予以报道,如果信号发生器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

在下述的内容中,小编将会对发生器" target="_blank">信号发生器的相关消息予以报道,如果信号发生器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

一、大功率信号发生器

1.电容性负载驱动:压电器件(电压/功率放大器)

压电陶瓷晶片是一种结构简单且轻巧的电学器件,当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形;另一方面,当振动压电陶瓷时,则会产生相应电荷。压电陶瓷晶片适合机械形变、振动、次声波、声波和超声波和次声波的产生和检测,具有灵敏度高,无磁场散播外溢,不用铜线和磁铁,成本低耗电少,便于大量生产等优点而获得了广泛应用。常见的压电器件包括:压电陶瓷片、压电传感器、压电换能器等。

2.电感性负载驱动:线圈(功率放大器)

亥姆霍兹线圈,是指如果有一对相同的载流圆线圈彼此平行且共轴,通以同方向电流,当线圈间距等于线圈半径时,两个载流线圈的总磁场在轴的中点附近的范围内是均匀的。亥姆霍兹线圈主要用途是,产生标准磁场;霍尔探头和各种磁强计的定标;地磁场的补偿;磁屏蔽效果的判定;空间辐射磁场的测量和排除;物质磁特性的研究;生物磁性的研究等等。

3.低阻抗驱动:低压差线性稳压器(LDO)测试

低压差线性稳压器是新一代的集成电路稳压器,它可用于电流主通道控制,芯片上集成了具有极低线上导通电阻的mosfet,肖特基二极管、取样电阻和分压电阻等硬件电路,并具有过流保护、过温保护、精密基准源、差分放大器、延迟器等功能。低压差线性稳压器被广泛应用于各类工业和消费类电子的二次电源设计中。

二、如何使用安捷伦信号发生器

据小编所知,安捷伦信号发生器主要由开关电源模块、主板、YIG调谐振荡器YTO、分频倍频幅度调制放大微波组件、微带开关滤波器组件、SDA组件、键盘显示器组件、低频扩展组件、步进衰减器、耦合器和检波器组成。

小编提示大家安捷伦信号发生器的使用:

1、设置负斜波函数信号波形

第一步:新建一个工作文档,添加安捷伦函数信号发生器、示波器、接地端。双击安捷伦信号发生器图标,打开放大面板,点击开关。

第二步:点击“SHIFT”按钮,再单击“任意波(Arb),屏幕显示“SINC”,按键盘上的“→”,屏幕显示“NEG_RAMP~”,单击“回车键”

NEG表示负的,RAMP SIGNAL是斜波信号的意思。

第三步:点击“SHIFT”按钮,再两次单击“任意波(Arb)”按钮,屏幕显示“NEG_RAMP arb”

第四步:设置波形的频率与幅度(Freq与Ampl)分别为2KHZ与2Vpp,观察波形。

2、设置指数函数信号波形

第一步:新建一个工作文档,添加安捷伦函数信号发生器、安捷伦示波器、接地端。双击安捷伦信号发生器图标,打开放大面板,点击开关。

第二步:点击“SHIFT”按钮,再单击“任意波(Arb),屏幕显示“SINC”,按键盘上的“→”键两次,屏幕显示“EXP_RISE~”,单击“回车键”

EXP是函数的意思,FALL表示下降,RISE表示上升

第三步:点击“SHIFT”按钮,再两次单击“任意波(Arb)”按钮,屏幕显示“EXP_RISE arb”,再按键盘上的“→”键,则屏幕显示“EXP_FALL arb”,最后,按“ENTER”进行保存。

第四步:设置波形的频率与幅度(Freq与Ampl)分别为3KHZ与1.5Vpp,观察波形。

下降指数函数信号波形

3、设置调幅波

第一步:打开信号发生器放大面板,观察信号输出为(1KHZ、100MVpp)。

第二步:点击“SHIFT”键,再按“调幅”(正弦波)按钮,在屏幕下方会出现AM字样。此时设置调幅波的载波频率、幅度为(2KHZ、1Vpp)

第三步:利用安捷伦示波器,观察波形(调节水平时间量程和垂直电压量程)

第四步:设置已调波的频率与幅度。按频率(Freq)按钮,再按“SHIFT”,然后再按频率(Freq)按钮,屏幕上出现“绝对值:500HZ”,再点击“幅度”(Ampl)按钮,设置幅度为“500MVpp)

第五步:观察波形

上述所有信息便是小编这次为大家推荐的有关信号发生器的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭