当前位置:首页 > 测试测量 > 测试测量
[导读]以下内容中,小编将对测试测量中的频谱分析仪的相关内容进行着重介绍和阐述,希望本文能帮您增进对频谱分析仪的了解,和小编一起来看看吧。

以下内容中,小编将对测试测量中的频谱分析仪的相关内容进行着重介绍和阐述,希望本文能帮您增进对频谱分析仪的了解,和小编一起来看看吧。

一、频谱分析仪带宽解惑

带宽是频域分析中的常用指标。频谱分析仪的常见带宽包括分辨率带宽和视频带宽。本文将全面解释这些概念,以及它们之间的联系和区别。

RBW(分辨率带宽)代表频谱分析仪清晰区分两种不同频率信号的能力。

如果两个不同频率的信号之间的距离低于频谱仪的RBW,这两个信号就会部分重叠,难以区分。就像在电脑上使用不同的分辨率查看图片一样,清晰度是完全不同的。这里的“清楚”只是一种主观感觉。一般的量化标准是在载波峰值衰减3dB的地方定义分辨率带宽。在电磁干扰(EMI)测试标准中,分辨带宽的标准是6dB。可以说6dB的选择性强于3dB。

利用频谱分析仪测量两个距离约为20kHz的单音信号。当使用带宽为30kHz、10kHz和3kHz的RBW进行观察时,这两个频率相近的信号的实测功率完全不变。清晰度水平完全不同。

但是,3dB带宽的量化标准仍然不够严格,因为它只限制了3dB点的位置。在相同的RBW下,还需要参数“矩形系数”。在某些地方,它被称为形状因子,即衰减60dB时的带宽与衰减3dB时的带宽之比。数值越小越好,说明选择的形状比较细长,可以完全分离频率相邻的信号。一般来说,普通数字频谱分析仪的平方系数一般在5:1左右。极端情况下,如果3dB带宽与60dB带宽相同,那么矩形系数为1,就是一个矩形!

RBW的带宽和矩形系数基本上决定了频谱分析仪的频率分辨能力,即区分不等幅信号的能力;另一方面,一旦确定了RBW,就不可能观察到比RBW窄的频率。频谱。随着频率分辨率的变化,相邻两个不等幅信号的分辨率不同。

当然,影响频谱分析仪频率分辨率能力的因素不止这两个。在测量非常接近载波信号的小信号时,即使RBW设置得非常小,也可能无法区分。这是因为频率分辨率能力还受到LO的近端相位噪声和残余调制的限制。

二、频谱分析仪3大性能指标

1、频率扫描宽度(Span)

有不同的方法来分析频谱宽度,扫描宽度,频率范围,频谱跨度等。通常是指可以在光谱仪显示屏的左右垂直校准线中显示的响应信号的频率范围(光谱宽度)。根据测试需要自动调整或人工设置。扫描宽度表示光谱仪在测量过程中显示的频率范围(即频率扫描)可以小于或等于输入频率范围。频谱宽度通常分为三种模式。

(1)全扫描频谱分析仪可以一次扫描其有效频率范围。

(2)每个扫频光谱仪必须一次只扫描一个指定的频率范围。可以改变在每种情况下表示的光谱宽度。

零扫描频率的频率为零,频谱分析仪不扫描频率,并成为调谐接收器。

2、扫描时间(扫描时间,简化为ST)。

也就是说,执行全频率范围扫描并完成测量所需的时间,也称为分析时间。 通常扫描时间越短,在未来保证测量精度的情况下,需要将扫描时间控制在适当的范围内。与扫描时间相关的因素主要有频率扫描范围、分辨率宽带、视频滤波。现代频谱分析仪通常具有多级扫描时间,最小扫描时间由测量通道的电路响应时间决定。

3、幅度测量精度

绝对幅度精度和相对幅度精度由许多因素决定。 绝对幅度精度是满量程信号的指标,它受输入衰减,IF增益,分辨率带宽,比例保真度,频率响应和校准信号本身精度的影响。 相对幅度精度与测量方法有关,在理想条件下,只有两个误差源,频率响应和校准信号精度。准确度可能非常高。 仪器必须在制造前进行校准。 各种错误已单独记录并用于校正测量数据。 显示的幅度精度得到了改善。

以上所有内容便是小编此次为大家带来的有关频谱分析仪的所有介绍,如果你想了解更多有关它的内容,不妨在我们网站或者百度、google进行探索哦。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭