当前位置:首页 > 测试测量 > 测试测量
[导读]在这篇文章中,小编将对光纤光谱仪的相关内容和情况加以介绍以帮助大家增进对光纤光谱仪的了解程度,和小编一起来阅读以下内容吧。

在这篇文章中,小编将对光纤光谱仪的相关内容和情况加以介绍以帮助大家增进对光纤光谱仪的了解程度,和小编一起来阅读以下内容吧。

一、光纤光谱仪结构组成

光纤光谱仪包括以下几个主要部分:

1.入射狭缝:将入射的光学信号构建成一个明确的物像;

2.准直部分:使光学信号的光线平行。该准直器可以为透镜、反射镜、或色散元件的部分功能,如在凹面光栅光谱仪中的凹面光栅的部分功能;

3.色散部分:通常采用光栅,将平行光在空间上进行色散;

4.聚焦部分:收集色散的光学信号,使得大部分入射狭缝的单色影像聚焦于焦平面;

5.阵列检测器:放置于焦平面,从而检测大部分单色影像的光强度。该检测器可以是CCD阵列或其它的光检测阵列。

二、光纤光谱仪特点

(1)光纤光谱仪是光纤技术的引入,使待测物脱离了样品池的限制,采样方式变得更为灵活,利用光纤探头把远离光谱仪器的样品光谱源引到光谱仪器,以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。

(2)光纤光谱仪以电荷耦合器件(CCD)阵列作为检测器,对光谱的扫描不必移动光栅,可进行瞬态采集,响应速度极快(测量时间为13~15ms),并通过计算机实时输出。

(3)光纤光谱仪采用全息光栅作为分光器件,杂散光低,提高了测量精度。

(4)光纤光谱仪应用计算机技术,极大地提高了光谱仪的智能化处理能力。

三、光纤光谱仪的使用

光纤光谱仪是光学仪器的主要构成部分。由于其检测精度高、速度快等优点,已成为光谱测量学中使用的重要测量仪器被广泛应用于农业、生物、化学、地质、食品安全、色度计算、环境检测、医药卫生、LED检测、半导体工业、石油化工等领域。

操作步骤如下:

1、开光谱仪电源

2、开计算机电源

3、在文件管理器中用鼠标指按UVWinl ab图标,此时出现UVWinL ab的应用窗口,仪器已准备好,可选用适当方法进行分析操作。

使用方法:

1、扫描(SCAN),用以进行光谱扫描。

2、时间驱动(TIMEDRIVER),用以观察一定时间内某种特定波长处纵坐标值的变化。

3、波长编程(WP)用以在多个波长下测定样品在一定时间内的纵坐标值变化,并可以计算这些纵坐标值的差或比值。

4、浓度(CONC)用以建立标准曲线并测定浓度。

5、进入所需方法,在方法窗口中选择所需方法的文件名。

注意事项:

1、测试时应佩戴相应护目镜,防止激光对眼睛造成伤害。

2、测试时应在暗室中,避免外来光源对测试造成误差。

3、测试时应只让少量激光射入光纤,避免大量激光射入损伤测试元件。

四、光纤光谱仪的用途

光纤光谱仪以其检测精度高、速度快等优点,已成为光谱测量学中使用的重要测量仪器,被广泛应用于农业、生物、化学、地质、食品安全、色度计算、环境检测、医药卫生、LED检测、半导体工业、石油化工等领域。

光纤光谱仪应用的详细介绍:

1、发射光谱测量

发射光谱测量可以用不同的实验布局和波长范围来实现,还要用到余弦校正器或积分球。发射光谱测量可以在紫外/可见和可见/近红外波长范围内测量。

对于发射光谱的绝对测量,光谱仪可以配置成波长范围从200-400nm或350-1100nm,或组合起来实现紫外/可见200-1100nm,并可以在美国海洋光学公司的定标实验室里进行辐射定标。定标后的实验布局不能改变,如光纤和匀光器都不能更改。

2、LED测量

最简单而且迅速地测量LED的整个光通量的方法就是使用一个积分球,并把它连接到一个美国海洋光学公司的光谱仪上。该系统可以用卤素灯进行定标(LS-1-CAL-INT),然后用广州标旗软件从测量到的光谱分布计算出相关参数,并实现辐射量的绝对测量。所测光源的光谱发光强度还可以用μW/cm2/nm来计算、显示并存储。另外的窗口还可以显示大约10个参数:辐射量μW/cm2, μJ/cm2, μW或μJ;光通量lux或lumen,色轴X, Y, Z, x, y, z, u, v和色温。

3、薄膜厚度测量

光学的膜厚测量系统基于白光干涉测量原理,可以测量的膜层厚度10nm-50μm,分辨率为1nm。薄膜测量在半导体晶片生长过程中经常被用到,因为等离子体刻蚀和淀积过程需要监控;其它应用如在金属和玻璃材料基底上镀透明光学膜层也需要测量膜层厚度。

以上所有内容便是小编此次为大家带来的有关测试测量仪器光纤光谱仪的所有介绍,如果你想了解更多有关它的内容,不妨在我们网站或者百度、google进行探索哦。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭